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Introduction

Ossification of the Internet

The Internet, which evolved as an experimental packet
switched network has grown beyond originally expected
bounds.

Resistance to changes at the Network Layer: Most changes
are done at the end nodes, not routers.

Difficulties in IPv6 and IP Multicast Deployment

Ever Increasing User expectations

Need for customisation of services and protocol Stacks
through economically viable means

Separation between infrastructure and Service
Optimization of resource Usage and routing beyond BGP
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Network Virtualisation

Virtualisation

Abstraction between user
and physical resources.

Potential strategy for
addressing internet
ossification.

Benefits

Building, testing and
experimentation of novel
network architectures.

Customised services and
protocol stacks amoung SPs.
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Problem: Efficient Resource Utilisation

Virtual Network Initialisation

Resource Allocation not
trivial

Requires mapping virtual
nodes and links to substrate
nodes and links

Computationally intractable

State-of-the-art

Most current solutions static

Dynamic ones allocate fixed
resources
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Distributed, Dynamic Resource Management (DDRM)

Observation

Non-uniform internet traffic
calls for better RM

2-Step Approach

Virtual Network Embedding

Distributed, Dynamic
Resource Management

Proposed Method

Artificial Intelligence,
Reinforcement Learning,
Multi-Agent Systems
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Reiforcement Learning (RL)

An agent is situated in an environment,

Perceives state, st , and takes an action, at to change it,

Receives a reward, rt , which is an evaluation of its action

Objective: maximise reward obtained in the long term
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Q-Learning (I)

Temporal difference algorithm used to determine the best
actions to take in each possible state, by finding a policy that
maximizes long term measure of reinforcement

A policy defines the learning agent’s way of behaving at a
given time

The action to be taken in a given state depends on the
Q-values Q(s, a) that are representative of the desirability of
each action, a in that state, s.

Update Rule

Q(sp, ap)← (1− α)Q(sp, ap) + α

{
rp + λmax

a∈A
Q(sn, a)

}
(1)
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Q-Learning (II)

Action Selection

ε-greedy: a greedy action is selected most of the time, and −
using a small probability − a random action is chosen once in
a while.

Softmax: differs in how random action is selected. Assigns
weights to all actions based on their values.

Softmax Action probability equation

P(a|s) =
exp{Q(s, a)/τ}∑̂

a 6=a

exp{Q(s, â)/τ}
(2)
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Learning Multi-Agent Systems

A group of agents located in the same environment

Actions taken by a given agent could affect other agents

Agents could be cooperative or competitive
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Learning-based DDRM

Multi-agent System

Distributed, an agent for each
substrate node and link

Evaluative Feedback

Perceive, Act, Feedback -
Reinforcement Learning

Q-Learning

Define: States, Actions, Values,
Policy, Reward, Action Selection
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Reinforcement Learning Model

States

Vector S where each s ∈ S
represents state of a virtual

link/node. s =
(
Ra, Rv

x ,

Rs
x

)
Each state 9 bits, implying
29 = 512 states

Actions

Vector A where each a ∈ A
represents action for virtual
node/link
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Reward Function

r(v) =

{
−100 if Ra ≤ 0.25

νRu −
(
κD̂ij + ηP̂i

)
otherwise

Objective is to encourage high virtual resource utilisation
while punishing na ∈ Na for dropping packets and la ∈ La for
having a high delay

Punitive reward of −100 to resource allocations below 25% to
ensure that this is the minimum allocation to a virtual
resource.

Policy

Implemented by lookup table. 9 possible actions, 512 possible
state ⇒ Policy size is 9× 512 = 4608
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Initialisation

Q-learning requires all
state-action pairs to be
visited at least once so as to
reach optimality

A random or constant initial
values may lead to a slow
convergence especially for a
policy with many
state-action values like we
have in our approach

Q(s, a) =
a

Ψ
× (s − 255) (3)



Introduction Problem Definition Proposed Approach Solution Model Evaluation Conclusion

Learning Algorithm

Action Selection

Evaluation of
softmax and
ε-greedy

Agent Cooperation

Conflict avoidance
for substrate link
agents
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Simulation Setup
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Evaluations I



Introduction Problem Definition Proposed Approach Solution Model Evaluation Conclusion

Evaluations II
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Conclusion

DDRM improves resource utlisation efficiency, better revenue
for InPs

When agents have learnt optimal policies, QoS is comparable
to static approach

Initialising Learning process enhances speed of convergence to
optimal actions

Softmax action selection method is best suited for this task
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