
Expert Systems with Applications 42 (2015) 1376–1390
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A neuro-fuzzy approach to self-management of virtual network
resources
http://dx.doi.org/10.1016/j.eswa.2014.08.058
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors at: UPC Campus Nord, Building C3, Sor Eulalia d’Anzizu,
08034 Barcelona, Spain. Tel.: +34 93 4016786; fax: +34 93 4017200.

E-mail addresses: rashid@tsc.upc.edu (R. Mijumbi), juanluis@entel.upc.edu
(J.-L. Gorricho), serrat@tsc.upc.edu (J. Serrat), shenmengnetlab@gmail.com
(M. Shen), xuke@mail.tsinghua.edu.cn (K. Xu), kunyang@essex.ac.uk (K. Yang).
Rashid Mijumbi a,⇑, Juan-Luis Gorricho a, Joan Serrat a,*, Meng Shen b, Ke Xu b, Kun Yang c

a Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
b Department of Computer Science, Tsinghua University, 100084 Beijing, PR China
c School of Computer Science and Electronic Engineering, University of Essex, Essex CO4 3SQ, UK

a r t i c l e i n f o
Article history:
Available online 30 September 2014

Keywords:
Neural networks
Fuzzy systems
Neuro-fuzzy systems
Reinforcement learning
Network virtualisation
Dynamic resource allocation
Multi-agent systems
Autonomous systems
Future Internet
a b s t r a c t

Network virtualisation promises to lead to better manageability of the future Internet by allowing for
adaptable sharing of physical network resources among different virtual networks. However, the sharing
of resources is not trivial as virtual nodes and links should first be mapped onto substrate nodes and links,
and thereafter the allocated resources managed throughout the lifetime of the virtual network. In this
paper, we design and evaluate reinforcement learning-based neuro-fuzzy algorithms that perform
dynamic, decentralised and coordinated self-management of substrate network resources. The objective
is to achieve better efficiency in the utilisation of substrate network resources while ensuring that the
quality of service requirements of the virtual networks are not violated. The proposed algorithms are
evaluated through comparisons with a Q-learning-based approach as well as two static resource alloca-
tion schemes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Network virtualisation (Fischer, Botero, Till Beck, de Meer, &
Hesselbach, 2013) continues to be a focus of the research commu-
nity due to its possibility to allow infrastructure providers (InP)
who own substrate networks (SN) to lease out chunks of their
physical resources to service providers (SP). The SPs then use these
resources to create virtual networks (VN), which are used to either
provide end-to-end services to end users or in a more general case,
also lease these resources out to lower tier SPs. In network virtual-
isation, a VN is made up of a set of virtual links and nodes which
are supported by SN physical paths and nodes respectively.

One of the important steps involved in initialising VNs is the
efficient sharing of SN resources among the set of VNs to be sup-
ported by the SN. This can normally be divided into two steps
(Mijumbi et al., 2014). The first step performs the mapping of vir-
tual nodes and links of a new VN request to substrate nodes and
links respectively, subject to a set of pre-defined constraints (e.g.
topology, node queue size and link bandwidth). This step is known
as virtual network embedding (VNE) (Fischer et al., 2013). The
second step involves the management of resources allocated to
VNs throughout their lifetime, aiming at efficient resource utilisa-
tion while meeting certain quality of service requirements (e.g.
delay, jitter and packet drop rate).

A number of state-of-the-art proposals exist for resource alloca-
tion in network virtualisation. Some of these approaches perform a
static mapping (only VNE) without any considerations for possibil-
ities of adjustments to initial mappings, while those that propose
dynamic solutions do allocate a fixed amount of node and link
resources to the virtual networks through out their life time. In
general, there is only a limited number of decentralised and
dynamic solutions to VNE (Fischer et al., 2013). Since network
loading due to user traffic varies with time, allocating a fixed
amount of resources based on peak loadings could lead to an inef-
ficient utilisation of overall substrate network resources, whereby,
during periods when the virtual nodes and/or links are lightly
loaded, substrate resources are still reserved for such virtual
nodes/links, while possibly rejecting new requests for such
resources. This would have a negative impact on the revenue of
the InPs, and could hinder the practical advancement of network
virtualisation.

In our previous work (Mijumbi et al., 2014), we proposed a
dynamic and decentralised scheme for dynamic resource allocation
in virtual networks, which was based on Q-learning (Even-Dar &
Mansour, 2004) and a look-up table-based policy. However, as
the state space of the resource allocation and utilisation in virtual
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networks is continuous, a look-up table representation would suf-
fer from the curse of dimensionality (Qi-ming, Quan, Zhi-ming, &
Yu-chen, 2009), and hence limit solution scalability in terms of
memory requirements for storage of continuous state-action val-
ues. Therefore, Mijumbi et al. (2014) discretised the state space
to limit the number of states. This comes at a cost in terms of
resource allocation efficiency as it limits the sensitivity of resource
re-allocation actions to changes in resource utilisation levels.

This paper significantly extends (Mijumbi et al., 2014) by pro-
posing an adaptive (changes with variations in the resource utilisa-
tion), hybrid (uses both supervised and unsupervised learning),
distributed (represented by a multi-agent system), cooperative
(between agents) approach to resource management in VNs that
takes as input a continuous state space, and outputs a continuous
action space. We model the substrate network as a multi-agent
system (Stone & Veloso, 2000) in which each node or link is repre-
sented by an agent. However, instead of the agents directly using
reinforcement learning (RL) (Even-Dar & Mansour, 2004) as was
proposed in Mijumbi et al. (2014), the agents in this paper use
an adaptive hybrid neuro-fuzzy system (NFS) (Nürnberger,
Nauck, & Kruse, 1999) which learns by use of a reinforcement
learning-like reward. The objective of each agent is to dynamically
adapt its knowledge base so as to efficiently utilise the resources of
the substrate network (avoid that virtual nodes/links have high
percentages of unutilised resources), while ensuring that the QoS
requirements of the VNs (measured in terms of packet drop rate,
delay, jitter) are not negatively affected (by ensuring that at any
point the VNs have the resources they require).

The contributions of this paper are as follows:

(1) an adaptive neuro-fuzzy system that dynamically learns
allocation of substrate resources to virtual networks,

(2) a hybrid learning mechanism which uses supervised learn-
ing to initialise the rule base and then uses unsupervised
learning to adapt the rule base and fuzzy sets of each rule
to achieve efficient resource allocation,

(3) A cooperation scheme that allows the substrate network
agents to coordinate their actions so as to avoid conflicts
and to share their knowledge so as to enhance their learning
speed and improve action selection efficiency.

The rest of the paper is organised as follows: We define the
dynamic resource allocation problem in the context of network vir-
tualisation in Section 2. Section 3 briefly introduces neural net-
works, fuzzy systems, neuro-fuzzy systems and reinforcement
learning while the proposed NFS is described in Section 4. The pro-
posed evaluative feedback and rule base initialisation approaches
are presented in Sections 5 and 6 respectively, while we define
the agent cooperation scheme in Section 7. The evaluation of per-
formance is given in Section 8. Related work is presented in Section
9, and the paper is concluded in Section 10.
2. Resource allocation problem description

2.1. Virtual and substrate network modelling

The allocation of SN resources to a given VN is initiated by a SP
specifying resource requirements for both virtual nodes and links
to the InP. The specification of VN resource requirements is usually
represented by a weighted undirected graph denoted by
Gv ¼ ðNv ; Lv Þ, where Nv and Lv represent the sets of virtual nodes
and links respectively. Each virtual link lij 2 Lv connecting the vir-
tual nodes i and j has a maximum delay Dij and bandwidth Bij,
while each virtual node i 2 Nv has a proposed location Liðx; yÞ, a
constraint on deviation from its proposed location DLiðDx;DyÞ
which specifies the maximum allowed deviation for each of its x
and y coordinates, and a queue size Q i, which is a measure of the
maximum number of packets (or Bytes) a given node can have in
its buffer before dropping packets. Similarly, a substrate network
can be modelled as an undirected graph denoted by Gs ¼ ðNs; LsÞ,
where Ns and Ls represent the sets of substrate nodes and links,
respectively. Each substrate link luv 2 Ls connecting the substrate
nodes u and v has a delay Duv and a bandwidth Buv , while each sub-
strate node u 2 Ns has queue size Qu and a location Luðx; yÞ.
2.2. Virtual network embedding (VNE)

The VNE problem involves the mapping of each virtual node
i 2 Nv to one of the possible substrate nodes within the set HðiÞ,
where HðiÞ is a set of all substrate nodes u 2 Ns that have enough
available queue size and are located within the maximum allowed
deviation DLiðDx;DyÞ of the virtual node. For a successful mapping,
each virtual node must be mapped and any given substrate node
can map at most one virtual node from the same request. Similarly,
all the virtual links have to be mapped to one or more substrate
links connecting the nodes to which the virtual nodes at its ends
have been mapped. Each of the substrate links must have a suffi-
cient bandwidth to support the virtual link. In addition, the total
delay of all the substrate links used to map a given virtual link
must not exceed the maximum delay specified by the virtual link.
For avoidance of doubt, we state that our consideration is that VNs
arrive one at a time and hence the embedding is online, initialising
every VN request on arrival. VNE is out of the scope of this work.
Any of the static approaches in Section 9.1 can be used for this step.
In this paper, two static approaches are used for comparisons in the
evaluations. The first is VINEYard (Chowdhury, Rahman, &
Boutaba, 2012) and the other is a baseline optimal mathematical
programming formulation that performs both node and link
embedding in one step. The mathematical programs implementing
the algorithms in both approaches are solved using ILOG CPLEX
12.5 (IBM, 2014).
2.3. Dynamic resource management (DRM)

The next step, which is the focus of this paper, follows a suc-
cessful VNE. It involves the lifecycle management of resources allo-
cated/reserved for the mapped VN, and is aimed at ensuring
optimal utilisation of overall SN resources. Our consideration is
that SPs reserve resources to be used for transmitting user traffic,
and therefore, after successful mapping of a given VN, user traffic
in form of packets is transmitted over the VN. Actual usage of allo-
cated resource is then monitored and based on the level of utilisa-
tion, we dynamically and opportunistically adjust allocated
resources. The opportunistic use of resources involves carefully
taking advantage of unused virtual node and link resources to
ensure that new VN requests are not rejected when resources
reserved to already mapped VNs are idle. It is however a delicate
trade-off to ensure that the VNs always have enough resources to
guarantee that QoS parameters are kept as established in the cor-
responding SLAs. In Section 4, we detail the proposed neuro-fuzzy
DRM approach.
3. Learning neuro-fuzzy systems

This Section introduces the four main background topics� fuzzy
systems, neural networks, neuro-fuzzy systems and reinforcement
learning � which constitute the proposed solution.
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3.1. Fuzzy systems (FS)

FSs are rule-based expert systems, which use fuzzy rules and
fuzzy inference (Kasabov, 1996). These systems are usually made
up of three functional blocks: fuzzification, knowledge base and
inference, and defuzzification. At the fuzzification step, the values
of numerical inputs are compared with membership functions
(MFs) so as to determine their degree of membership in the respec-
tive fuzzy sets.1 The knowledge base and inference block contains
the fuzzy rules (rule base) which represent knowledge and skills, a
database of fuzzy sets (represented by membership functions) used
to represent the fuzzy rules, and a decision making unit which per-
forms inference on the fuzzy rules. A fuzzy rule represents knowl-
edge and skills, and is of the form:

3.2. Neural networks (NN)

NNs are computational methodologies inspired by networks of
biological neurons to perform multifactorial analysis (Dayhoff &
DeLeo, 2001). These networks are made up of simple intercon-
nected computing nodes known as neurons which operate as sum-
ming devices. A neuron receives one or more inputs, which are first
multiplied by weights along each connection, and then summed to
produce a single number. This number is then passed through a
(usually non-linear) transfer function, which determines the
input–output behaviour of the neuron. If information flows in only
one direction (from input towards output), the neural network is
called a feed forward network. In NNs, neurons are arranged in lay-
ers. Each layer consists of one or more neurons. The most com-
monly used structure of NNs is made up of 3 layers; an input
layer, a hidden layer and an output layer (Smith, 1999). The learn-
ing ability of neural networks lies in their ability to gradually min-
imise an error, which is defined as the difference between a desired
output and actual output. Therefore, using neural networks
requires that for every input state, a desired output state must
be known so as to determine the error.

3.3. Neuro-fuzzy system (NFS)

Since fuzzy systems are created from explicit knowledge in
form of rules and membership functions (MFs), applying them in
dynamic systems requires a way of automatically tuning these
parameters (rules and MFs), or even changing the structure of
the system. One of the most popular ways of dynamically tuning
these parameters and/or adapting the structure of fuzzy systems
is by use of neural networks. A combination of neural networks
and fuzzy systems leads to NFSs. NFSs benefit from both the learn-
ing characteristics of NNs as well as interpretation and clarity of
systems representation found in fuzzy systems. A NFS can be
viewed as a special 3-layer feedforward neural network in which
the neurons use t-norms and t-conorms instead of the usual neural
network activation functions (Nürnberger et al., 1999). The first
layer represents the input variables, the hidden layer represents
the fuzzy rules and the third layer represents output variables.
The fuzzy sets are encoded as (fuzzy) connection weights. The
knowledge and hence accuracy of the network is determined by
its structure (the different connections), as well as the fuzzy
weights on these connections. We model the interactions between
the different components of the designed NFS, as well as with the
multi-agent system for the application to dynamic virtual network
resource management in Section 4.
1 While we have done our best to make this paper self-contained, a reader who is
not familiar with such terms as fuzzy variable, fuzzy set, fuzzy logic, fuzzy rule, t-
norm, t-conorm, membership functions is referred to (Kasabov, 1996) for an
introduction.
3.4. Reinforcement learning (RL)

RL is a technique from artificial intelligence (Russell & Norvig,
2009) in which an agent placed in an environment performs actions
from which it gets numerical rewards. For each learning episode, the
agent perceives the current state of the environment and takes an
action. The action leads to a change in the state of the environment,
and the desirability of this change is communicated to the agent
through a scalar reward. The agent’s task is to maximise the overall
reward it achieves throughout the learning period. It can learn to do
this over time by systematic trial and error, guided by a wide variety
of learning algorithms such as Q-learning.
4. NFS model for VN resource allocation

As mentioned in Section 1, VNE approaches allocate resources
to each virtual node and link as specified in VN requests. In static
allocation schemes, the amount of allocated resources is kept fixed
irrespective of actual utilisation, which leads to inefficient utilisa-
tion of substrate network resources (Mijumbi et al., 2014). Our
approach dynamically adjusts the resources allocated to each vir-
tual node and link using a neuro-fuzzy system. The overall system
model used for this purpose is shown in Fig. 2. As can be observed
from the model, we highlight the multi-agent system representing
the substrate network and the learning neuro-fuzzy system that
represents the internal components of each agent. We further split
the learning neuro-fuzzy system into four functional modules:
fuzzifier, RDI (rule base, database, inference), defuzzifier, and
learning (EF, AC, ARW). In the following subsections, each of these
elements of the model and their respective interactions is detailed.

4.1. Multi-agent environment

The multi-agent environment consists of all the agents that rep-
resent the substrate network. Specifically, each substrate node and
link is represented by a node agent na 2 N a and a link agent la 2 La,
where N a and La are the sets of node agents and link agents
respectively. The node agents manage node queue sizes while
the link agents manage link bandwidths. The agents dynamically
adjust the resources allocated to virtual nodes and links, ensuring
that resources are not left under-utilised, and that enough
resources are available to serve user requests. As shown in Fig. 2,
a given link agent receives as input the state of the substrate link
it manages.
Fig. 1. VNE and DRM.
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The state of any resource2 is a vector S with each term s 2 S rep-
resenting the state of one of the virtual links/nodes mapped onto it.
More specifically, this state, for any given virtual resource v hosted
on a substrate resource z, is represented by a 3-tuple, s ¼
Rv

a ;R
v
u ;R

z
u

� �
, where Rv

a is the percentage of the virtual resource
demand currently allocated to it, Rv

u is the percentage of allocated
resources currently unused, and Rz

u is the percentage of total sub-
strate resources currently unused. While in a given state, s, the agent
gives as output, an action. The action of each agent is a vector A,
where each term a 2 A indicates which action should be taken to
change the resources for each of the virtual node/link mapped onto
it. The action may be aimed at increasing or reducing the resources
(queue size or bandwidth) allocated to any virtual node or link
respectively. Each element in A corresponds to a unique element
in S. Based on how well a given action drives the objectives of the
system, the agent gets a performance evaluation (PE), which is used
to learn so as to improve future actions. We consider that each
na 2 N a has information about the substrate node resource availabil-
ity as well as the resource allocation and utilisation of all virtual
nodes mapped onto the substrate node. In the same way, we expect
that each la 2 La has information about substrate link bandwidth as
well as the allocation and utilisation of these resources by all virtual
links mapped to it.
4.2. Learning neuro-fuzzy system (NFS)

4.2.1. Database
The database is a definition of the fuzzy sets (FS) and the mem-

bership functions (MF) that represent them, and is used in the
2 We use the general term resource to mean either node queue size or link
bandwidth.
creation of fuzzy rules. We have defined six fuzzy sets into which
the input variables can fall. These are: very low (VL), low (L), lower
medium (LM), higher medium (HM), high (H) and very high (VH).
These fuzzy sets are represented by the monotonic membership
functions in Fig. 3. Each membership function y ¼ lðxÞ in Fig. 3 is
characterised by two parameters p and q such that lðpÞ ¼ 0 and
lðqÞ ¼ 1 as defined in Eq. (1). The MFs are used to determine a
value or degree of membership, which quantifies the grade of
membership of a given variable to the fuzzy sets.

y ¼ lðxÞ ¼

p�x
p�q if ðp 6 qÞ ^ ðx 2 ½p; q�Þð Þ ðaÞ
p�x
p�q if ðp > qÞ ^ ðx 2 ½q;p�Þð Þ ðbÞ

0 otherwise ðcÞ

8>><
>>:

ð1Þ

In the same way, we have defined eight fuzzy sets for the output
variable. These are: negative large (NL), negative medium (NM),
negative small (NS), negative zero (NZ), positive zero (PZ), positive
small (PS), positive medium (PM) and positive large (PL). These
fuzzy sets are represented by the monotonic membership functions
in Fig. 4, and have similar definitions as in (1).

4.2.2. Rule base
The rule base consists of the rules that are used by the agents to

take actions while in given states. These rules are based on the
input and output fuzzy sets defined in Figs. 3 and 4. As an example,
(2) presents four possible rules that could be formulated for the
system under consideration.

R1 : if Rv
a is VH and Rv

u is L and Rz
u is LM then O is PZ ð2aÞ

R2 : if Rv
a is L and Rv

u is H and Rz
u is HM then O is NZ ð2bÞ

R3 : if Rv
a is H and Rv

u is L and Rz
u is L then O is PS ð2cÞ

R4 : Rv
u is VL then O is PS ð2dÞ

In words, rule (2a) states that: if the resource allocation to the virtual
node/link v is very high AND a low percentage of these resources are
unused AND the substrate node/link z onto which it is embedded has
a low�medium percentage of free resources, then the action should
be to increase the amount of resources allocated to v by an amount
determined by positive zero. In general, each agent will have more
than one rule at any given time. Therefore, since we have 3 input vari-
ables each with 6 possible fuzzy sets and 1 output variable with 8
possible fuzzy sets, the maximum number of rules we can have in
the system is 6� 6� 6� 8 ¼ 1728. Initialising a system with this
number of rules would take a long time before the NFS has reduced
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the rules to the necessary ones.3 In this paper, we propose supervised
learning-based rule initialisation scheme that is aimed at enhancing
the learning speed of the agents. This scheme is presented in Section 6.

4.2.3. Fuzzifier
Given a state s represented by the real-valued variables Rv

a ;R
v
u and

Rz
u, a fuzzifier determines the set of rules R0# R that are satisfied

(fired), where R is the rule base. Then, for each satisfied rule, fuzzifi-
cation involves determining the membership degree (MD) of each
input variable in the respective fuzzy set. This is the result of the
function lðxÞ for a particular input variable, rule and membership
function, and is calculated using Eqs. (1). To illustrate this, consider
that rule (2a) has been satisfied by a given input state. Then, the fuzz-
ifier would have to determine the membership degrees
lVH

5a Rv
a

� �
;lL

5a Rv
u

� �
and lLM

5a Rz
u

� �
to which the inputs Rv

a ;R
v
u and Rz

u

belong to the fuzzy sets VH, L and LM respectively. As can be noted
from Fig. 3, a given input variable can belong to one or more MFs.
For example, the variable Rv

a ¼ 0:75 belongs to both H and VH with
membership degrees y ¼ lH

i ð0:75Þ ¼ 0:83 and y ¼ lVH
i ð0:75Þ ¼

0:17 respectively. In a similar way, given values of Rv
u ¼ 0:28 and

Rz
u ¼ 0:38, their degrees of membership to the respective fuzzy sets

can be determined as shown in Fig. 3.

4.2.4. Inference
The inference block receives, for each rule Ri 2 R0, a membership

degree yRv
a

i ; y
Rv

u
i and yRz

u
i for each of the variables Rv

a ;R
v
u and Rz

u respec-
tively. Ideally, standard inference would involve a max�min oper-
ation on these membership degrees (Kasabov, 1996). However, due
to the nature of the defuzzification function used in this paper (see
Section 4.2.5), inference only involves the min operation. This
operation results into the minimum membership degree
ymin ¼ min yRv

a
i ; y

Rv
u

i ; y
Rz

u
i

� �
for each rule. Then, the inverse k�1ðyminÞ

of each ymin is determined from (3).

x ¼ k�1ðyÞ ¼ p� yðp� qÞ ð3Þ

Eq. (3) is similar to (1), re-arranged to make x the subject. A matrix
M is then created with the each row containing the value ymin in the
first column and k�1ðyminÞ in the second column. Therefore, the
matrix M has as many rows as the number of fired rules. It is this
matrix that is used at the defuzzification step.

4.2.5. Defuzzifier
The output of the inference block is a matrix M of membership

degrees and their respective inverse values. The role of the
defuzzifier is to convert this matrix into an output action a for
3 We refer to rules as being necessary if they are often required by an agent, and
their actions usually lead the agent to efficient resource allocations.
the agent. In this paper, we adopt a non-standard defuzzification
approach proposed in (Nauck & Kruse, 1992), in which the crisp
output a is given by (4).

a ¼
Pn

i¼1 mi1 �mi2ð ÞPn
i¼1mi1

ð4Þ

where n ¼ jR0j is the number of fired rules, and mi1 and mi2 are the
elements in the first and second columns respectively of the ith row
of M. The rationale behind (4) is to determine a weighted average of
the potentially applicable actions by their corresponding member-
ship values. It is worth noting that this simplified defuzzification
process is a direct result of the monotonic membership functions
used to define the output fuzzy sets. These membership functions
make it unnecessary to make any translations of the inverse lymin

of each rule as these values are already crisp (Nauck & Kruse,
1992). The use of monotonic membership functions for the input
fuzzy sets is for simplicity.

4.2.5.1. Example: fuzzification, inference, defuzzification. To illustrate
the processes described above with regard to the VN resource allo-
cation problem, we revisit the four rules defined in (2). Consider
that the state of a given substrate resource z and a virtual resource
v is such that Rv

a ¼ 0:75;Rv
u ¼ 0:28 and Rz

u ¼ 0:38 as shown in Fig. 3.
In the fuzzification step, we note that the input variable Rv

a ¼ 0:75
lies in two fuzzy sets VH and H with membership degrees
lVH Rv

a

� �
¼ 0:17 and lH Rv

a

� �
¼ 0:83 respectively. In a similar way,

the membership degrees of Rv
u ¼ 0:28 and Rz

u ¼ 0:38 to their
respective fuzzy sets can be determined. We see that the rule R2

is not satisfied (e.g. since Rv
a does not belong to the fuzzy set L)

while rules R1;R3 and R4 are satisfied. In Table 1, we show these
details for each input variable. For R1, the inference step is
y1

min ¼ minð0:17;0:73;0:4Þ ¼ 0:17, that for R3 is y3
min ¼ 0:4, and that

for R4 is y4
min ¼ 0:07. We therefore have the membership degrees

for the three output fuzzy sets: PZ, PS and PS for rules R1;R3 and
R4 respectively. We now find the inverse for each ymin using (3).
As can be seen from Fig. 4, for R1; p ¼ 0:1 while q ¼ 0:0. Therefore,
k�1 y1

min

� �
¼ 0:1� 0:17� ð0:1� 0:0Þ ¼ 0:083. In a similar way,

k�1 y3
min

� �
¼ 0:12 and k�1 y4

min

� �
¼ 0:021. Finally, the input into the

output layer node is a n� 2 matrix where each row i contains the
output yi

min of the ith rule (Ri) in the first column and its inverse
k�1

i yi
min

� �
in the second column. For our example, the matrix, M

below will be the input to the output node (defuzzifier).

M ¼
0:17 0:0830
0:40 0:1200
0:07 0:0210

2
64

3
75

The last step is defuzzification and uses Eq. (4) on the contents of M
to produce the agent action. The action a in this case would be

ð0:17� 0:083Þ þ ð0:4� 0:12Þ þ ð0:07� 0:021Þ
0:17þ 0:4þ 0:07

¼ 0:11

This would mean that the resources allocated to the virtual resource
in question has to be increased by 11% of its total demand.

4.2.6. Learning
After an agent takes an action, we evaluate the action so as to

determine if it led to a better utilisation of substrate resources
without negatively impacting the QoS requirements of the virtual
node or link. Therefore, as shown in Fig. 2, the learning module
receives as input the agent’s action, and an evaluation of the per-
formance (PE) that resulted from this action. Then, the module out-
puts a ‘‘learning result’’ that is aimed at adjusting the knowledge
base, and hence lead to better actions in future. The agents
designed in this work perform learning to achieve one or more of
three objectives, which are aimed at (1) deleting rules deemed



Table 1
Running example – fuzzification.

Input variable Fuzzy sets Satisfied rules Membership degrees

Rv
a ¼ 0:75 VH, H R1;R3;R4 lVH

1 ð0:75Þ ¼ 0:17; lH
3 ð0:75Þ ¼ 0:83

Rv
u ¼ 0:28 VL, L R1;R3;R4 lL

1ð0:28Þ ¼ 0:73; lL
3ð0:28Þ ¼ 0:73; lVL

4 ð0:28Þ ¼ 0:07
Rz

u ¼ 0:38 LM, L R1;R3;R4 lLM
1 ð0:38Þ ¼ 0:4; lL

3ð0:38Þ ¼ 0:4
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unnecessary, (2) adding rules expected to be useful in future, and
(3) adjusting the membership functions. In order to achieve these
objectives, the learning module is made up of three sub-modules,
each of which is associated to one of the objectives as detailed in
what follows.
4.2.6.1. Adaptive rule weighting (ARW). Adaptive rule weighting
involves adjusting a weight wi. The weight wi is defined, initialised
and attached to each rule Ri during the rule base initialisation step
(see Section 6). After each learning episode, the weight wi is
adjusted in two ways; First, wi is decremented by a constant
u1 ¼ 1 if rule Ri was fired, and incremented by a constant
u2 ¼ 0:5 if the rule was not fired. The reason for adjusting wi based
on whether a rule was fired or not is that if a given rule is consis-
tently not used by an agent, then it is more likely that the rule is
unnecessary, and should therefore be dropped from the rule base.
In this paper, rules with lower values of wi are considered more
important than those with higher values; in fact, in our proposal,
when the value of wi is greater or equal to a constant W1, the agent
can consider the rule unnecessary or counterproductive and hence
the rule Ri is deleted from the rule base.

In addition, for all fired rules, wi is changed according to Eq. (5).
wnew
i ¼ wi � rðvÞ ð5Þ
where rðvÞ is a dynamic evaluation reward defined in (6). The
objective of (5) is to reduce the weight wi whenever the rule con-
tributes to a correct action (rðvÞ is positive), and increase it
otherwise.
4.2.6.2. Agent cooperation (AC). While adaptive rule weighting helps
an agent get rid of unnecessary rules, it does not help the agent
acquire more rules that are expected to be important to future
actions. Agent cooperation can be used for this purpose. Our pro-
posal in this regard involves a cooperation between different agents
in two ways. First, the agents coordinate to avoid conflicting
actions, and then, at predefined times, agents share information
aimed at improving their individual performances. By sharing
knowledge, the agents can either add or delete rules from their rule
bases. We describe cooperation between agents in Section 7.
4.2.6.3. Evaluative feedback (EF). Both ARW and AC can only add or
delete a rule from the rule base. However, it is also necessary to be
able to adjust a given rule, by changing the parameters of the
membership functions so as to improve the output of those rules
that remain in the rule base. This is achieved by using a reinforce-
ment learning-based evaluative feedback mechanism that uses a
reward function to adjust the membership functions. We describe
the reward function used in this paper in Section 5.1, and then
derive the rule updating mechanism used to learn the parameters
of rule membership functions in Section 5.2.
5. Evaluative feedback

5.1. Reward function

After each learning episode, the affected substrate and virtual
nodes/links are monitored, taking note of average utilisation of
substrate resources, the delay on virtual links and packets dropped
by virtual nodes due to buffer overflows. These values are fed back
to the agent in form of a performance evaluation (PE). The reward
resulting from a learning episode of any agent is therefore a vector
R in which each term rðvÞ corresponds to the reward of an alloca-
tion to the virtual resource v. This reward is an indication of the
deviation of the agent’s actual action from a desired action, and is
therefore aimed at minimising this deviation. The objective of
the reward function is to encourage high virtual resource utilisa-
tion while punishing na 2 N a for dropping packets and la 2 La for
having high delays. The reward function defined in this paper is
designed so as to carry two pieces of information; a magnitude
and a direction. If the agent’s action was desirable, rðvÞ is positive,
otherwise it is negative. The magnitude of rðvÞ gives the degree of
desirability or undesirability of the agent’s action, and is depen-
dent on resources allocated to the virtual resources, unutilised
resources, link delay in case of la 2 La and the number of dropped
packets in the case of na 2 N a. The resulting reward function is pre-
sented in (6).

rðvÞ ¼
js if s < 0:0ð Þ ðaÞ
Rv � Dvð Þ 8la 2 La ðbÞ
Rv � Pvð Þ 8na 2 N a ðcÞ

8><
>: ð6Þ

where j is a constant, and s is an index of the correctness of the
action adopted by the agent. Specifically, s gives an indication of
whether the action a taken by the agent should have been increasing
resource allocation or reducing it, and can take on positive or nega-
tive values based on the perceived expected direction of action. It is
worth noting that (6a) takes precedence over (6b) and (6c), imply-
ing that whenever it is satisfied, the reward is calculated from it.
Eqs. (6b) and (6c) respectively apply for link and node agents. The
value of s is defined in Eqs. (7).

s ¼

a if ðRv
a 6 n1

� �
^ a < 0:0Þð Þ ðaÞ

a if ðRv
u 6 n2

� �
^ a < 0:0Þð Þ ðbÞ

�a if ðRv
u P n3

� �
^ a > 0:0Þð Þ ðcÞ

0 otherwise ðdÞ

8>>><
>>>:

ð7Þ

where n1; n2, and n3 are constants, and a is the crisp output value of
the agent. The definition of s is aimed at ensuring that actions that
could possibly lead an agent away from its objective receive a nega-
tive feedback. In fact, Eq. (7a) is aimed at ensuring that resource allo-
cations below n1 are avoided as this could easily have a negative
impact on the QoS requirements of the virtual resource. In particular,
(7a) states that: if the resource allocated to v is already below a given
minimum n1 and the agent’s action is to further reduce the allocation
ða < 0:0Þ, then the reward for this agent should be negative, propor-
tional to the amount by which resource allocation was reduced. In the
same way, Eq. (7c) states that if at least n3 of the resources allocated to



Fig. 5. Neuro-fuzzy network for VN resource allocation.
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the virtual resource v are unutilised and the agent decides to increase
the resource allocation ða > 0:0Þ, then this action takes the agent in
the wrong direction, and as a result, s should be negative. The con-
stant j in Eq. (6a) can be adjusted to result into higher/lower negative
rewards so as to guide the agent away from situations where s < 0:0.
The values j ¼ 1; n1 ¼ n2 ¼ 0:25 and n3 ¼ 0:75 were used in this
paper.

Rv is the utilisation of resources allocated to v and is derived
from Rv

u , while Dv and Pv are measures of the performances of link
agents and node agents respectively, and their values are derived
from the link delay Dij and number of lost packets Pi.

Rv ¼ 1� Rv
u ;Dv ¼

Dij

0:1
and Pv ¼

Pi

100

The reason for scaling Dv and Pv is to ensure that 0 6 Dv 6 1 and
0 6 Pv 6 1 which is also part of the effort to ensure that
�1 6 rðvÞ 6 1. The choice of the values 100 and 0.1 is based simu-
lations in which we observed that 0 6 Dij 6 0:1 and 0 6 Pi 6 100. In
any case, the values of Dv and Pv are capped at a value 1 and if the
scaling results into a value greater than 1, then the maximum value
1 is used.

5.2. Membership function learning

With the overall reward determined, we now need to determine
the contribution of each fired rule Ri 2 R0 to the reward, and use it
in the learning process to update the membership functions. We
can derive the contribution of each rule as a gradient descent (8)
on squared error (11), and thereafter adjust a parameter, e of the
membership functions belonging to the rule Ri so as to reduce
the general error.

De ¼ �a
@E
@e

� �
ð8Þ

where De is the amount by which parameter e should be changed so
as to reduce the error E in its action, 0 6 a 6 1 is referred to as
learning rate, and it determines how fast learning occurs. Therefore,
an updated value enew of the parameter can be determined from its
current value e using Eq. (9).

De ¼ enew � e ð9Þ

Combining (8) and (9) results into the general learning rule for e
shown in (10)

enew ¼ e� a
@E
@e

� �
ð10Þ

The error E is a measure of the difference between the expected
optimal action a� and the actual action a, and is usually given by
a square of the difference between a� and a as shown in (11).

E ¼ 1
2
ða� � aÞ2 ð11Þ

In order to determine a learning procedure over e, we start by deter-
mining the error rate @E=@e, which can be derived using the chain
rule shown in (12).

@E
@e
¼ @E
@a
� @a
@l
� @l
@e

ð12Þ

Using (11), @E=@a ¼ �ða� � aÞ, and as defined in 5.1, the difference
between expected and actual actions ða� � aÞ is given by the reward
function rðvÞ. @a=@l is the contribution of membership function l
to the overall action a (and hence its contribution towards the
error). For this work, the value k�1ðyminÞ as defined in Section
4.2.4 as the inference result of the antecedent of the rule under con-
sideration is used. Finally, if the parameter e is along the horizontal
axis of the membership function, then @l=@e is the gradient of the
membership function (i.e. @l=@e = @y=@x) and is given by 1=ðq� pÞ
(using Eq. (3)). Therefore, (12) becomes

@E
@e
¼ �rðvÞ � k�1ðyminÞ �

1
ðq� pÞ ð13Þ

Substituting (13) into (10) gives (14), which is the membership
parameter learning equation used in this paper.

enew ¼ eþ a
rðvÞ
ðq� pÞ � k�1ðyminÞ
� �

ð14Þ

In this paper, the membership parameter e to be learnt is chosen as
q. This is based on the observation, from Eq. (14), that for negative
values of rðvÞ (i.e. the action taken by the agent was undesirable),
the new value enew increases if p > q and reduces otherwise. Choos-
ing to learn the value of q ensures that whenever an undesirable
action is taken, the value Dx ¼ jq� pj is reduced (the gradient of
the membership function is increased), hence making the rule
under consideration less likely to be fired by inputs in the same
range. On the other hand, for positive values of rðvÞ (a good action
was taken), we do increase Dx, making the rule more likely to be
used by inputs in a close range. To avoid possibilities of division
by zero (when p ¼ q), we add a small constant d0 to the value
ðq� pÞ in the denominator of (14). Therefore, the final membership
function parameter learning rule is given in (15).

qnew ¼ qþ a
rðvÞ

ðq� pÞ þ d0
� k�1ðyminÞ

� �
ð15Þ

Since the crisp value of the output is based on a combination of the
different input membership functions, adjustments in input MFs
directly affect future outputs of the same rule. For this reason, in
this proposal, the updating of the membership functions is
restricted to antecedents of the rules.

5.3. Neuro-fuzzy system network structure

With the overall model defined, the next step is to design the
actual neuro-fuzzy network. We propose a 3-layer feedforward
network with an input layer, a rule (hidden) layer and an output
layer. In Fig. 5 we show such type of network, designed for the



Table 2
Action and state to membership function mapping.

(a) Previous action (%) MF

Maintain Rv
a unchanged PZ

Decrease Rv
a by 50.0 NL

Decrease Rv
a by 37.5 NM

Decrease Rv
a by 25.0 NS

Decrease Rv
a by 17.5 NZ

Increase Rv
a by 17.5 PZ

Increase Rv
a by 25.0 PS

Increase Rv
a by 37.5 PM

Increase Rv
a by 50.0 PL

(b) Previous state (% value) MF

0 < Variable 6 12:5 VL
12:5 < Variable 6 25 L
25 < Variable 6 37:5 LM
37:5 < Variable 6 50 LM
50 < Variable 6 67:5 HM
67:5 < Variable 6 75 HM
75 < Variable 6 87:5 H
87:5 < Variable 6 100 VH
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resource allocation model represented in Fig. 2. As can be seen, the
input layer contains 3 neurons and has as inputs the three vari-
ables Rv

a ;R
v
u and Rz

u which we use to define the state of system
resources. The output layer contains a single neuron, and its output
is an action a 2 A aimed at changing resource allocation. The rule
(hidden) layer contains fuzzy if-then rules that are used by the sys-
tem to make resource allocation decisions. On the left side of the
rule layer are fuzzy weights lx

i that represent the weight of each
connection from an input to a rule node Ri, and using the fuzzy
set x. Similarly, the right hand side of the rule layer has another
set of fuzzy weights kx

i connecting a rule Ri to the output, repre-
sented a fuzzy set x. While it is possible for different rule nodes
to share some weights on either side, the network designed in this
paper creates a unique fuzzy weight for each rule. This way, the
rule addition/deletion described in Section 4.2.6 involves creat-
ing/cutting connections between the appropriate input-rule-out-
put nodes of the network. In the same way, membership
function learning involves adjusting these weights for the appro-
priate connections/rules.

6. Rulebase initialisation

At the beginning of the learning process, the system has no
rules. Therefore, we need to define a way of establishing an initial
rule base. One rule initialisation possibility is a decremental rule
learning proposed in Nürnberger et al. (1999) in which all the pos-
sible rules are initialised into the system and then subsequently
reduced as the agent learns. As already mentioned our system
can work with up to 1728 i.e. ð6� 6� 6� 8Þ rules, and starting
the learning process with this high number of rules would slow
down the learning process. Our proposal starts by creating the
maximum possible rule base with 17208 rules. A weight wi ¼ 0
is then attached to each rule Ri, and is used to perform a weighting
and pruning process that is based on expert knowledge. The ini-
tialisation proposed in this paper includes three sequential steps
as described below.

(1) The first step takes into account the likelihood that a rule
may not be required when in optimal operation. This is
based on the design objectives of the system. Specifically,
since we would like the system to be mindful of the QoS
requirements of VNs, the system is unlikely to be in states
where Rv

a = VL. Similarly, efficient substrate resource utilisa-
tion would ensure that states with Rv

u = VH and/or Rz
u = VH

are less likely to occur. For each of such rules, the weight
wi is incremented by d1.

(2) The second takes into account the likelihood that a given
rule could cause the agent to take a wrong action. Examples
of such rules could be in situations where a given resource
allocation is very high, but the selected action is to increase
the allocation even more by a very high percentage. In partic-
ular, rules in which Rv

a = VH with actions PM and PL, Rv
a = VL

with actions NM and NL and those Rv
u = VL with actions NM

and NL are likely to lead to wrong actions. For each of such
rules, the weight wi is incremented by d2.

(3) In the final step, each of the rules is evaluated based on an
input–output dataset, and the weight wi adjusted again.
The dataset used for this purpose was saved from the q-table
of a reinforcement learning approach proposed in Mijumbi
et al. (2014). This q-table was a result of a resource alloca-
tion learning system for a similar resource allocation task
and it gives the state-action-values for the learning task.
The table is made up of 3 columns, one for the state (which
is also defined by three variables Rv

a ;R
v
u and Rz

u), another for a
possible action, and the other for a value that shows the
desirability of taking the action while in the given state.
However, before the dataset can be used for the pruning pro-
posed in this paper, we need to process it so as to put in a
form similar to fuzzy rules. In Section 6.1, we describe the
preprocessing steps taken. After this process, all rules for
which the weight wi is greater than a pre-established con-
stant W2 are pruned from the rule base.

6.1. Dataset preprocessing

The training dataset is made up of 4608 entries (resulting from
512 possible states and 9 possible actions), each showing the value
of every possible action while in each state. The first step is to
choose only those entries corresponding to the best possible action
(actions with the best values) for each state. This leaves us with
512 entries. We then convert these state-action-values into fuzzy
rules. However, this requires a mapping from the state and action
codes used in Mijumbi et al. (2014) to the fuzzy sets used in this
paper. In Table 2 (a) and (b) we show the mapping that has been
performed on the states and actions. However, since each of the
state MFs can only take on 6 values for the 3 input variables, the
maximum number of possible unique antecedent combinations is
6� 6� 6 ¼ 216. Therefore, we again prune the training dataset
eliminating entries with the same antecedent (remaining with
one rule with the highest original state-action-value for all dupli-
cate rules). After this final step, we have a training rule set RRL with
216 rules that we can use as a training set for an initial pruning of
the rule base.

6.2. Initial rule base pruning

For each rule rj 2 RRL, each rule Ri 2 R in the rule base is evalu-
ated so as to determine the correctness of its consequent. To this
end, a rule matching procedure is performed. This determines
whether the antecedent of rj is the same as that of Ri. The rule
matching step involves comparing the fuzzy sets representing
the input and/or output variables. For this initialisation step, two
rules match if all the three corresponding antecedent fuzzy sets
are the same. The result of a rule matching process is either a suc-
cess if the rules match, or a failure otherwise. If Ri matches rj then
an error, which is a measure of how the consequent of rj differs
from that of Ri, is evaluated. To achieve this, we model each of
the 8 possible consequents with an integer value. These values



Table 3
Output membership function to integer mapping.

NL NM NS NZ PZ PS PM PL

�4 �3 �2 �1 1 2 3 4
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are shown in Table 3. The absolute value, of the difference between
the value aj for the consequent of rule rj and ai for rule Ri is then
used to increment the weight wi for rule Ri.

We show the pseudocode for the rule initialisation in Algorithm
1. In the algorithm, l1

i ;l2
i ;l3

i and k1
i are the initial fuzzy sets for the

variables Rv
a ;R

v
a ;R

v
a and O respectively. The fuzzy sets shown Figs. 3

and 4 are used for the initialisation stage, but as learning pro-
gresses, these sets change for the respective rules. After the
weighting and pruning stage, the proposed initialisation algorithm
reduces the initial 1728 rules to 1215 rules.4rulebase

Algorithm 1. Rule base initialisation

Initial Rule Base R Creation

1: Initialise rule weight: i ¼ 1
2: for l1

i 2 l do
3: for l2

i 2 l do
4: for l3

i 2 l do

5: for k1
i 2 k do

6: Create Rule: Ri if (Rv
a is l1

i and Rv
u is l2

i

7: and Rz
u is l3

i ) then O is k1
i

8: Initialise weight: wi ¼ 0
9: Increment rule weight: iþþ

10: end for
11: end for
12: end for
13: end for

Rule Weighting and Pruning

14: for Ri 2 R do
Step 1: Efficiency and QoS Awareness

15: if ðl1
i ¼ VLÞ or ðl2

i ¼ VHÞ or ðl3
i ¼ VHÞ then

16: wi ¼ wi þ d1

17: end if

Step 2: Protection against wrong actions

18: if
19: (l1

i = VH and k1
i = PM) or. . .or (l2

i = VL and k1
i = NL)

20: then
21: wi ¼ wi þ d2

22: end if

Step 3: Learning from Dataset

23: for rj 2 RRL do
24: Perform Rule Matching ðrj;RiÞ
25: if ðMatching ¼ SuccessÞ then
26: wi ¼ wi þ ðjoj � oijÞ
27: if wi >¼ W2 then
28: DELETE Ri

29: end if
30: end if
31: end for
32: end for
4 The initial rule base, training dataset and final initialised rule base can be
downloaded from: http://www.maps.upc.edu/rashid/files/nfsrules.rar.
6.3. Time complexity: rule base initialisation

The initial rule base creation stage in Lines 2� 13 involves three
basic operations (Lines 6;8 and 9) for each of the possible rules R.
Therefore, this step can be performed in time Oðj3RjÞ. The rule
matching operation involves at most four operations (3 for the
antecedent and 1 for the consequent). Therefore, Lines 24� 30
includes at most six operations, implying that the for loop from
Lines 23� 31 runs in time Oðj6RRLjÞ. Including the two operations
on Lines 16 and 21 leads to the time O jð6RRL þ 2ÞRjð Þ for the Lines
14� 32. Therefore, the dominating factor in Algorithm 1 is
O jRRL � Rjð Þ. It is worth noting that both jRj and jRRLj are predefined
as 1728 and 216 respectively.
7. Agent cooperation

In this paper, the substrate node or link agents can cooperate on
two fronts. The first is an action coordination aimed at conflict pre-
vention, while the other is a knowledge sharing aimed at learning
enhancement. We briefly describe both of them below.

7.1. Coordination among agents

From the VNE problem formulation, a given virtual link lij may
be mapped onto more than one substrate link. This creates a pos-
sibility of more than one substrate link agent dynamically manag-
ing the resources allocated to such a virtual link. In this case, the
set of agents L

lij
a � La that are able to change the resource allocation

to lij must coordinate their actions to avoid conflicting resource
allocations. The first step in the conflict prevention proposed in
this paper is the creation of the agent set L

lij
a . After every VNE step,

each substrate link agent that participated in the embedding deter-
mines – for each new embedded virtual link – the set of other sub-
strate link agents that manage the virtual link resources. Since we
consider that all the agents in our model belong to the same orga-
nisation (the infrastructure provider), we consider that this kind of
information is readily available to all agents. The next step is to
allow each agent la 2 L

lij
a to communicate with every other agent

in the same set, sharing resource allocation information every time
an allocation is performed. Therefore, after each learning episode, if
an agent la 2 L

lij
a decides to change the amount of resources allo-

cated to lij, it sends an update to other agents in L
lij
a providing infor-

mation about the action a to be taken as well as the final
percentage resource allocation R

lij
a resulting from the action. All

the agents in L
lij
a therefore perform the resource change at the same

time. Once again, the fact that a given agent is able to trust and
take actions based on decisions of another agent is reasonable
since all these agents belong to the same organisation and as such,
they cannot have conflicting objectives. Finally, in order to ensure
that the actions and information sharing of the agents L

lij
a is syn-

chronised, only one of them learns at any given time. This is
achieved by starting the learning processes of each agent at differ-
ent times on their creation and thereafter performing learning at
regular intervals.

7.1.1. Scalability consideration
It is worth noting that in general, if the link mapping algorithm

is efficient, the agent set L
lij
a will contain an average of 2� 3

agents.5 This means that at any point, a given agent la 2 L
lij
a only

needs to send update messages to about 1� 2 other agents. We con-
sider that this number of update messages is manageable, and would
not congest the network. In addition, we specifically avoid the
5 Based on simulations carried out using the S-OS algorithm (see Table 7) for
verage link bandwidth utilisation levels between 50% and 70%.
a

http://www.maps.upc.edu/rashid/files/nfsrules.rar
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exchange of ‘‘acknowledge’’ messages to diminish as much as possi-
ble the traffic among agents, instead preferring to use an update
message that also includes the final resource allocation to lij. This
ensures that if for any reason a given agent does not get an update
message, this can be corrected at the next learning episode.

7.2. Knowledge sharing among agents

The second form of cooperation between agents involves shar-
ing of their knowledge bases. In this proposal, each learning agent
as 2 ðLa [ N aÞ periodically shares its rule base Ras as well as data-
base of membership functions f as

with other agents at 2 At , where
At � ðLa [ N aÞ. There are two advantages that are derived from this
cooperation. First, it leads to performance enhancement if it leads
to addition of new knowledge to the base or to improvement of the
membership functions of existing rules and then it allows a faster
convergence to optimal network structure in case it leads to dele-
tion of some rules. For each newly received rule Ri

as
2 Ras , the inte-

gration into the rule base is a four-step matching and elimination
process. The receiving agent at compares Ri

as
to each of the rules

in its rule base, performing a rule matching (described in Section
6.2) over both the input and output variable fuzzy sets. If the result
of matching for the whole rule base is a failure (the rule Ri

as
does

not match any of the rules in the rule base), then the agent adds
the rule Ri

as
together with its membership functions to its knowl-

edge base. On the other hand, if the result of matching is a success
(there is a rule that is similar to Ri

as
), then the agent learns from the

membership functions of Ri
as

. This is achieved by replacing the
p� values of the membership functions of the matching rule Ri

with a weighted sum defined in (16).

pnew ¼ ðc� p1Þ þ ðb� p2Þ ð16Þ

where p1 is the old p-valueand p2 is the p-value of the received rule.
c and b are constants intended to bias the sensitivity of the agent to
knew information. cþ b ¼ 1. In this paper, the values c ¼ 0:7 and
Table 4
NS3 parameters.

Parameter Value

Queue type Drop tail
Queue drop mode Bytes
Maximum queue size 6,553,500 Bytes
Maximum packets per VN 3500 Packets
Number of VNs 1024
Network mask 255.255.224.0
IP address range 10:0:0:0� 10:255:224:0
Network protocol IPv4
Transport protocol TCP
Packet MTU 1518 Bytes
Packet error rate 0.000001 per Byte
Error distribution Uniform (0, 1)
Port 8080

Table 5
Brite network topology generation parameters.

Parameter Substrate network Virtual network

Name (model) Router Waxman Router Waxman
Size of main plane (HS) 250 250
Size of inner plane (LS) 250 250
Node placement Random Random
GrowthType Incremental Incremental
Neighbouring nodes 3 2
alpha (Waxman parameter) 0.15 0.15
beta (Waxman parameter) 0.2 0.2
BWDist Uniform Uniform
b ¼ 0:3 are used. Needless to mention, the overall learning scheme
proposed in this paper learns both the p and q parameters of the
membership functions. The q parameter is learnt through the eval-
uative feedback described in Section 5.2 while this subsection has
defined a learning procedure for the p values.

Algorithm 2. Neuro-fuzzy learning algorithm

Initialisation
1: Initialise Rule Base, R
2: Determine current state, sc

3: Define: previous state, sp ¼ sc , previous action, ap ¼ 0:0,
next state, sn ¼ sc , set of fired rules F ¼ ;.

Thread1: Learn from others (Knowledge Sharing)
4: repeat
5: Wait(Cooperation Interval)
6: Receive rule base Rx from other agents
7: for Rj 2 Rx do
8: if Rj 2 R then
9: for Ri 2 R do

10: Update pi as described in Section 7.2
11: end for
12: else
13: Add Rj to R
14: end if
15: end for
16: until Learning is stopped

Thread2: Learn from actions (Evaluative Feedback)
17: repeat
18: Wait(Learning Interval)
19: Read sp, ap, sn, F
20: Determine rðvÞ using Eq. (6)
21: for ri 2 F do
22: for kx

i 2 ri do

23: Determine qkx
i

new using Eq. (15)
24: end for
25: Update weight wi as using ARW in Section 4.2.6
26: end for
27: Set F ¼ ;
28: for Ri 2 R do
29: if wi P W1 then
30: Delete Ri

31: end if
32: end for
33: Determine current state sc , add all fired rules to F
34: Determine action, a 2 A as explained in Sections 4.2.3–

4.2.5
35: Take action a, and determine next state, s0n
36: Set sp ¼ sc , ap ¼ a, sn ¼ s0n
37: until Learning is stopped
7.2.1. Scalability consideration
Allowing every agent as 2 ðLa [N aÞ to communicate and share

knowledge with every other agent in the system would be non-
scalable. In this paper, we restrict each agent to only share knowl-
edge with its direct neighbours. This means that any link agent
la 2 La can only share experience with at most two node agents
at either end of the link. In the same way, any given node agent
na 2 N a can only share knowledge with only those link agents that
directly connect it to its adjacent nodes.

The complete learning algorithm proposed in this paper is
shown in Algorithm 2. As can be seen, the learning process is made
up of different steps as already described. However, we note that



Table 7
Compared algorithms.

Code Resource allocation approach

D-NFS Dynamic, based on neuro-fuzzy system [our contribution]
D-RL Dynamic, based on reinforcement learning (Mijumbi et al.,

2014)
S-CNMMCF Static, coordinated node mapping and MCF for link mapping

(Chowdhury et al., 2012)
S-OS Static, link based optimal one shot virtual network

embedding (Mijumbi et al., 2014)
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some of the processes take place in parallel, for example, the
agents continuously learn from each other (knowledge sharing)
independently of the learning achieved from the evaluative
feedback.

7.3. Time complexity: neuro-fuzzy learning algorithm

The initialisation in Line 1 can be performed in time O jRRL � Rjð Þ
as established in Section 6.3. Lines 7� 15 require at most OðjRj2Þ
time, while the for loop in lines 21� 26 can run in time Oðj5RjÞ.
Finally, Lines 28� 32 can be performed in time OðjRjÞ. Since
R > RRL, the overall time complexity of Algorithm 2 is OðjRj2Þ.
Therefore, both algorithms proposed in this paper run in polyno-
mial time.

8. Performance evaluation

8.1. Simulation model

The simulation model used in this paper is based on Fig. 1. We
start by creating a SN topology, and thereafter VN requests arrive
one at a time to the SN. The substrate and virtual network topolo-
gies are generated using Brite (Medina, Lakhina, Matta, & Byers,
2001) with settings shown in Table 5. Whenever a virtual network
request is accepted by the substrate network, the virtual network
topology is created in NS3 (2014) (we added a network virtualisa-
tion module to NS3 based on parameters in Table 4). Our NS3 Mod-
ule allows us to create a traffic application for each accepted VN
request, and the traffic application starts transferring packets over
the virtual network. The traffic application generates packets based
on real traffic traces from CAIDA anonymised Internet traces
(CAIDA, 2014). This dataset contains anonymised passive traffic
traces from CAIDA’s equinix-chicago and equinix-sanjose monitors
on high-speed Internet backbone links, and is mainly used for
research on the characteristics of Internet traffic, including flow
volume and duration (CAIDA, 2014). The trace source used in this
paper was collected on 20th December 2012 and contains over
3.5Million packets. We divide these packets among 1000 virtual
networks, so that each virtual network receives about 3500 pack-
ets. These traces are used to obtain packet sizes and time between
packet arrivals for each VN. As the source and destination of the
packets are anonymised, for each packet in a given VN, we generate
a source and destination IP address in NS-3 using a uniform distri-
bution. Simulations were run on an Ubuntu 12.04 LTS Virtual
Machine with 4.00 GB RAM and 3.00 GHz CPU specifications.

8.2. Simulation parameters

Both substrate and virtual networks were generated on a
250� 250 grid. The queue size and bandwidth capacities of sub-
strate nodes and links as well as the demands of virtual networks
are all uniformly distributed between minimum and maximum
values shown in Table 6. Link delays are as determined by Brite.
Each virtual node is allowed to be located within a uniformly dis-
tributed distance 75 6 x 6 150 of its requested location, measured
Table 6
Substrate and virtual network properties.

Parameter Substrate network Virtual network

Minimum number of nodes 25 5
Maximum number of nodes 35 15
Minimum node queue size ð100� 1518Þ Bytes ð10� 1518Þ Bytes
Maximum node queue size ð200� 1518Þ Bytes ð20� 1518Þ Bytes
Minimum link bandwidth 2.0 Mbps 1.0 Mbps
Maximum link bandwidth 10.0 Mbps 2.0 Mbps
in grid units. We assumed that virtual network requests arrive fol-
lowing a Poisson distribution with an average rate of 1 per minute.
The average service time of each virtual network is 60 min and is
assumed to follow a negative exponential distribution.

8.3. Comparison against alternatives

We compare the performance of our proposed solution with
closely related solutions. In particular, three representative solu-
tions from the literature are chosen. The first performs a dynamic
resource allocation using one shot VNE for the first step and rein-
forcement learning for resource management (Mijumbi et al.,
2014); the second is a static allocation approach that performs a
coordinated node and link mapping (Chowdhury et al., 2012);
and the third is also a static baseline formulation that performs a
one shot mapping, and also used in performance evaluations in
Mijumbi et al. (2014). The solution in (Chowdhury et al., 2012)
was adapted to fit into our formulation of the problem. In particu-
lar, for (Chowdhury et al., 2012) the link delay requirements were
neglected at the embedding stage, and for this reason, it is not used
in QoS evaluations. In addition, our consideration in this paper is
for unsplittable flows. We identify and name the compared solu-
tions in Table 7. We also compare different variations of our pro-
posal to determine the effect of initialising rule bases as well as
sharing knowledge between the agents. Details of these variations
are shown in Table 8.

8.4. Performance metrics

We evaluate the performance of our proposal on two fronts; the
embedding quality, as well as the quality of service of the virtual
networks. Our goal is that the opportunistic use of virtual network
resources should not be at the expense of the service quality
expectations of the network users.

8.4.1. Embedding quality
We define embedding quality as a measure of how efficiently

the algorithm uses the substrate network resources for accepting
virtual network requests. This is evaluated using the acceptance
ratio and the total instantaneous accepted virtual networks. The
acceptance ratio is a measure of the long term number of virtual
network requests that are accepted by the substrate network.
The total instantaneous accepted virtual networks is a measure
of the embedding cost incurred by a given substrate network, as
Table 8
Compared approaches – Initialisation and agent cooperation.

Code Resource allocation approach

D-RL Reinforcement learning (Mijumbi et al., 2014)
I-C Initialised rule base, cooperating agents
I-NC Initialised rule base, non cooperating agents
NI-C Non initialised rule base, cooperating agents
NI-NC Non initialised rule base, non cooperating agents
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a substrate network that incurs a lower embedding cost normally
has more extra resources at any point and hence is able to have
many embedded virtual networks at any point.
8.4.2. Quality of service
We use the packet delay and drop rate as indications of the

quality of service. We define the packet delay as the total time a
packet takes to travel from its source to its final destination. The
drop rate is defined as the ratio of the number of packets dropped
by the network to the total number of packets sent. As shown in
Table 4, we model the networks to drop packets due to both node
buffer overflow as well as packet errors. In addition, as it is more
important in some applications, we define the variations of these
two parameters. The jitter (delay variation) is defined as the differ-
ence between delays during different time periods, while the drop
rate variation is defined as the variation between packet drops in
different time periods. The time interval to update the measure-
ments corresponds to the transmission of 50 packets.
8.5. Discussion of results

The simulation results are shown in Figs. 6–14. As can be seen
from Fig. 6, while both dynamic approaches perform better than
the static ones in terms of virtual network acceptance ratio, the
neuro-fuzzy approach outperforms all three. The reason for the
dynamic approaches performing better than the static ones is that
in former cases, the substrate network always has more available
resources than in the later case, which is a direct result of allocat-
ing and reserving only the required resources for the virtual net-
works. The fact that NFS outperforms the RL approach can be
attributed to two factors: (1) the NFS system models the states
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Fig. 7. Average SN queue size utilisation.
and actions with better granularity i.e. without restricting the
states and actions to few discrete levels, and (2) the NFS system
is more dynamic in the sense that it continuously changes its
knowledge base by adding rules, modifying them, and deleting
others. We also note that S-OS has a better acceptance ratio than
S-CNMMCF. This is due to the fact that since S-CNMMCF performs
node and link mapping in two separate steps, link mappings could
fail due to locations of already mapped nodes. In addition, the link
mapping phases could potentially use more resources than if both
steps are performed once. A similar performance pattern can be
noted from Fig. 9 which further confirms that at any given point,
the substrate networks that dynamically manage resources are
able to embed more VNs than the static ones, and that D-NFS per-
forms better than D-RL and S-OS better than S-CNMMCF. Figs. 7
and 8 show the average utilisation of substrate node queue and
link bandwidth respectively. It can be observed that except for S-
CNMMCF, the other three approaches on average use the same
amount of substrate network resources. The fact the S-CNMMCF
has a lower resource utilisation is expected as a result of having
slightly more resource requests rejected either due to a node map-
ping that makes link mapping impossible, or for previous link map-
pings using more resources. The fact that S-OS, D-RL and D-NFS all
have on average the same utilisation is mainly due to all of them
having the same initial mapping algorithm (which is S-OS). How-
ever the interesting point from looking at Figs. 6–9 is that while
S-OS, D-RL and D-NFS all have a similar resource utilisation levels,
D-NFS uses these resources to serve a higher number of VNs at any
given time, which confirms the extra efficiency introduced by the
proposed approach.

Fig. 10 shows that S-OS has an almost constant packet drop rate
while that for D-RL and D-NFS is initially high, but gradually
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reduces. The fact that the dynamic approaches initially perform
badly is expected, since, at the beginning of the learning processes
the agents may vary the queue sizes quite considerably leading to
more packet drops. This high initial packet drop also affects the
overall speed at which the drop rate converges to the one in the
static approach. This can be confirmed by noting from Fig. 13, that
in fact, the periodic drops in packets by all approaches finally con-
verge. Once again, the fact that D-NFS has a lower packet drop rate
than D-RL over the learning period can be explained since D-NFS
has better granularity in perceiving the state of resources and allo-
cation. In a similar way, Fig. 11 shows that the packet delays for the
two dynamic approaches is initially higher but reduces over the
learning period, while Section 14 shows that in fact the variations
in this delay converge to the static approach. Again, these differ-
ences are attributed to the initial learning phase, and the difference
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Fig. 12. Initialisation and agent cooperation.
in D-RL and D-NFS is due to better options in perception and action
for D-NFS.

Finally, Section 8 shows how fast the agents learn optimal rules
(for D-NFS) and policy (for D-RL). The actions of the agents are
compared with optimal actions. An optimal action for an agent is
that action that would lead to a resource allocation equal to what
the network is actually using Mijumbi et al. (2014). The deviations
in these evaluations are therefore with reference to actual resource
usage in a similar network that is not performing dynamic alloca-
tions. The approaches compared in this regard are shown in Table
8. Except for D-RL, all other entries are variations of D-NFS. It can
be observed that in general, after convergence, the actions from
D-NFS have a slightly higher optimality than those from D-RL. As
earlier explained, this is expected due to the granularity of actions
taken by D-NFS. However, we also note that D-RL converges to
optimal actions slightly faster than D-NFS. This can be explained
by the fact that D-RL has a far less state space to learn than D-
NFS (due to discretisation). We also note from the graphs that
the approaches proposed for rule base initialisation and agent
cooperation do enhance the speed at which the agents’ actions
converge optimal ones. However, as can be seen from the graphs,
even without rulebase initialisation and no cooperation between
the agents (NI-NC), the actions would finally converge to the opti-
mal ones, albeit at a much later stage than others.
9. Related work

9.1. Static virtual network embedding

In order to cope with the hardness of the VNE problem, some
existing research on VNE (Lu & Turner, 2006; Zhu & Ammar,
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2006) assume that all VN requests are known in advance, others
(Fan & Ammar, 2006; Lu & Turner, 2006) ignore constraints on vir-
tual nodes and links, while all of Fan and Ammar (2006), Lu and
Turner (2006) and Zhu and Ammar (2006) perform the node and
link embedding in two uncoordinated steps and assume that the
substrate network has infinite capacity to accept all VN requests.
VINEYard (Chowdhury et al., 2012) proposes a linear programming
based node mapping algorithm that coordinates both node and
link mapping. A distributed one-shot embedding solution based
on a multi-agent system is proposed in Houidi, Louati, and
Zeghlache (2008), while Infhr and Raidl (2011) and Jarray and
Karmouch (2013) propose mathematical programming based solu-
tions to VNE. A common feature of all these approaches is that
their focus is on the mapping of virtual nodes and links to substrate
nodes and paths i.e virtual network embedding. We remark once
more that virtual network embedding is not the focus of this paper,
and that unlike the proposal in this paper, they all do not make any
changes to virtual resource allocations through out the lifetime of
the VNs.

9.2. Dynamic virtual network embedding

The authors in Cai, Liu, Xiao, Liu, and Wang (2010) and
Marquezan, Granville, Nunzi, and Brunner (2010) study the VN
embedding problem when the substrate network is dynamically
changing. We differ from these works in that our consideration is
on the changes in actual loadings of the virtual networks, rather
than on a changing substrate network. In Yu, Yi, Rexford, and
Chiang (2008), a solution that considers dynamic requests for
embedding/removing virtual networks is presented. The authors
map the constraints of the virtual network to the substrate net-
work by splitting the requirements of one virtual link in more than
one substrate link. On the other hand, the proposal in Rahman and
Boutaba (2013) is aimed at network survivability, performing re-
embeddings in case of failures in the substrate network. Both
approaches differ from the work in this paper in that our approach
does not require changing virtual network embeddings. The
authors in Fajjari, Aitsaadi, Pujolle, and Zimmermann (2011) pro-
pose a solution which aims at minimising the number of congested
substrate links by carrying out link migrations. But this is a reactive
solution since it is carried out only when an embedding strategy
cannot assign a VN request in the SN. Sun, Yu, Anand, and Li
(2013) proposes algorithms for the problem of efficiently reconfig-
uring and embedding VN requests submitted to a cloud-based data
center. The authors require that the ISPs submit new requests to
modify existing ones, and that only one such request can be han-
dled at a given time. Our work differs from previous ones in that
our resource re-allocations are proactive (not triggered by failed
embeddings), autonomous (not triggered by either users or net-
work providers) and do not involve any re-embeddings of already
mapped requests. Zhang, Qian, Tang, Wu, and Lu (2011, 2012) pro-
poses opportunistic sharing of substrate network resources among
different virtual networks, while Mijumbi et al. (2014) proposes a
multi-agent based q-learning for a dynamic and decentralised
resource allocation in virtual networks. The work in this paper dif-
fers from previous ones in that our resource re-allocations are pro-
active (not triggered by failed embeddings), autonomous (not
triggered by either users or network providers) and do not involve
any re-embeddings of already mapped requests. Our proposals also
consider a complete network (not a single node or link as in some
works), through out its lifetime.

9.3. Dynamic resource management

Most existing works on dynamic resource management are
based on three approaches: control theory, performance dynamics
modelling and workload prediction. Pan, Mu, Wu, and Yao (2008)
and Patikirikorala, Colman, Han, and Wang (2011) are control the-
oretic approaches while Han, Guo, Ghanem, and Guo (2012) and
Lai, Chiang, Lee, and Lee (2013) are based on performance dynam-
ics. The authors in Hu, Wong, Iszlai, and Litoiu (2009) and Jokhio,
Ashraf, Lafond, Porres, and Lilius (2013) use workload prediction.
An approach that uses fuzzy neural methodology for joint radio
resource management is proposed in Giupponi, Agust, Prez-
Romero, and Sallent (2008). The major differences between our
approach and these works is mainly based on the application
domain. Dynamic resource management in virtual networks pre-
sents additional challenges as we have to deal with different
resource types (such as bandwidth and queue size) which are not
only segmented into many links and nodes, but also require differ-
ent quality of service guarantees. In addition, in a VN environment,
the managed resources are dependent on each other, for example a
given virtual link can be mapped on more than one substrate link
and the resources allocated to a virtual node may affect the perfor-
mance of virtual links attached to it, say in terms of increased rout-
ing delays.
9.4. Neuro-fuzzy systems

With regard to NFSs, the most closely related works to our pro-
posal are in (Nauck & Kruse, 1992; Nürnberger et al., 1999). The
NEFCON model (Nürnberger et al., 1999) consists of 3 layer units,
and weights that based on fuzzy sets. It proposes a neuro-fuzzy
system and its implementation in the area of control theory. The
model learns and optimizes the rule base of a Mamdani like fuzzy
controller online by a reinforcement learning algorithm that uses a
fuzzy error measure. In a related work, Nauck and Kruse (1992)
also uses a fuzzy error propagation approach to adapt membership
functions in a fuzzy set based fuzzy control environment by use of
neural network learning principles. Like the proposal in this paper,
both these approaches use 3-layer feedforward neural networks
whose structures and weights are represented by fuzzy rules. In
addition, both use reinforcement based error functions for adjust-
ing the network weights, so as to achieve network learning. In a
later effort, Nürnberger (2001) presents a hierarchical recurrent
neuro-fuzzy model for time series prediction and analysis of
dynamic systems, which reduces the complexity of the structure
by allowing for information storage of prior system states inter-
nally. The first difference between these works and our work is
that in this paper, the learning environment contains multiple
learning entities, which is dictated by the problem considered in
this paper and the proposed distributed model of the substrate net-
work. Having multiple learning entities in a single system presents
several challenges among which includes managing possible con-
flicting actions as well as the need for cooperation to benefit from
actions of others. In addition, the specific application domain of VN
resource allocation requires problem specific modelling of input–
output relationships, knowledge base, reward function and learn-
ing algorithm. To the best of our knowledge, each of these aspects
of the problem cannot be trivially adapted from any related works.
10. Conclusion

This paper has proposed an autonomous system that uses a
combination of neural networks, fuzzy systems and reinforcement
learning to achieve dynamic self-management of resources in net-
work virtualisation. We modelled the substrate network as a dis-
tributed system of autonomous, adaptive and cooperative
intelligent agents which – unlike previous works – dynamically
adapts the actual resource allocations to virtual networks to per-
ceived demand for them. We have proposed a range of algorithms
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starting from a hybrid initialisation of the knowledge base of these
agents, a self-governing cooperation of the multi-agent system,
and the general reinforcement learning based algorithm for contin-
uously changing the structure and weights of the designed neuro-
fuzzy network. We have been able to evaluate the proposed algo-
rithms through comparisons with state-of-the-art approaches
and been able to show that our proposals lead to better utilisation
of substrate network resources by accepting about 23% more vir-
tual network requests, which would directly translate into
increased revenue for the infrastructure providers. We have also
shown that after the learning process, the agents are able to ensure
that the QoS requirements of the virtual networks are not nega-
tively impacted.

In future, we will try to enhance the convergence speed of the
proposed algorithms, say, by creating an initial offline learning
step. We also intend to extend this proposal to the multi-InP envi-
ronment, which raises more questions especially with regard to
cooperation and trust between agents as well as the need for nego-
tiation. It would also be interesting to study how the rules in each
agent vary in a given agent over time, with the aim of determining
possibilities for enhancing the effect of agent cooperation.

However, there are practical questions that still need to be
answered. For example, the ease of representing each network
node or link with an agent, as well the actual over-head that would
result in message exchanges between these agents. There is also a
need to have service level agreements between substrate and vir-
tual network owners that allows for continuous adjustments to
resource allocations. As an initial step, we are studying the possi-
bilities of implementing our proposals in a real network, by setting
up a server to collect virtual network requirements and user traffic
characteristics, and using this in a prototype LAN using the Java
Agent Development Framework (JADE) (Bellifemine, Caire, &
Greenwood, 2007).
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