
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

A Path Generation Approach to Embedding of
Virtual Networks

Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Raouf Boutaba

Abstract—As the virtualization of networks continues to attract
attention from both industry and academia, the Virtual Network
Embedding (VNE) problem remains a focus of researchers. This
paper proposes a one-shot, unsplittable flow VNE solution based
on column generation. We start by formulating the problem as a
path-based mathematical program called the primal, for which
we derive the corresponding dual problem. We then propose an
initial solution which is used, first, by the dual problem and then
by the primal problem to obtain a final solution. Unlike most
approaches, our focus is not only on embedding accuracy but
also on the scalability of the solution. In particular, the one-shot
nature of our formulation ensures embedding accuracy, while the
use of column generation is aimed at enhancing the computation
time to make the approach more scalable. In order to assess
the performance of the proposed solution, we compare it against
four state of the art approaches as well as the optimal link-based
formulation of the one-shot embedding problem. Experiments on
a large mix of Virtual Network (VN) requests show that our
solution is near optimal (achieving about 95% of the acceptance
ratio of the optimal solution), with a clear improvement over
existing approaches in terms of VN acceptance ratio and average
Substrate Network (SN) resource utilization, and a considerable
improvement (92% for a SN of 50 nodes) in time complexity
compared to the optimal solution.

Index Terms—Network virtualization, resource allocation, vir-
tual network embedding, column generation, optimization.

I. INTRODUCTION

The ever increasing requirements placed on the Internet
are fueling its evolution to architectures which make a better
and more efficient use of the available network resources,
and promote service innovations. Service Providers (SPs)
have to satisfy personalized needs for their customers and
hence they are impelled to use different protocol stacks and
provide customized services and network resources. Network
virtualization [1] has been proposed as a feasible solution
to achieve this goal. In network virtualization, Infrastructure
Providers (InPs) divide their resources into chunks, called
VNs, which are allocated to SPs. Thanks to virtualization, the
resource chunks are isolated from each other so the service
networks behave as if they were independent though they share
the same substrate infrastructure.

However, the creation of VNs on top of a SN is not trivial.
VN topologies composed of virtual nodes and virtual links
have to be drawn to support traffic flows from sources to sinks.
Virtual nodes and virtual links then have to be mapped onto
the physical substrate in a way that satisfies user demands and

R. Mijumbi, J. Serrat and J.L. Gorricho are with the Network Engineering
Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.

R. Boutaba is with the D.R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

optimizes the use of the available resources. This is the basis
of the so called VNE problem [1], which in case of unsplittable
flows, i.e. flows that have to be treated as a unit from source
to sink, is NP hard [2]. Therefore, to simplify the problem,
several existing solutions to VNE either assume that the SN
supports the splitting of flows [3], or carry out the node and
link embedding in two separate steps [4], which can lead to
blocking or rejecting of resource requests at the link mapping
stage and hence a sub-optimal substrate resource utilization.

In this paper, we propose a near optimal solution to the
unsplittable flow VNE problem obtained by performing the
embedding in one-shot (i.e. both virtual nodes and links
are embedded in one step) using mathematical programming
and path generation1 [5]. The formulation of the embedding
problem as being one-shot is motivated by the need to obtain
an efficient embedding solution (which would ultimately lead
to better resource utilization and hence better profitability for
InPs), while the employment of path generation is aimed
at ensuring that the resulting algorithm is more scalable
compared to the optimal formulation.

To this end, we formulate two mathematical programs;
one is a path-based formulation of the unsplittable flow
one-shot VNE problem, also known as the primal problem,
while the other is its corresponding dual problem. For given
instances of the problem, both the primal and dual problems
have approximately the same solution value. The proposed
approach begins by obtaining an initial solution (composed
of paths in an augmented SN) to the primal problem using
a VNE approach that performs node and link mapping in
two coordinated stages. The next step is to enhance the initial
solution. This is achieved by using the initial solution as an
input into the dual problem, hence resulting into prices for
the SN links and nodes. Using Dijkstra’s algorithm [6], these
prices are utilized to determine an additional set of paths which
can be added to enhance the solution. These paths, together
with those obtained in the initial solution, are finally used to
solve the primal problem to obtain a final embedding solution.

The main contributions of this paper are as follows:
• A near optimal unsplittable flow one-shot VNE approach

that improves substrate resource utilization compared to
existing heuristic and approximation solutions.

• A path generation-based approach for unsplittable flows
that significantly improves the time complexity of the
embedding compared to the optimal solution.

The rest of the paper is organized as follows: Section II

1In this paper, we use the terms path generation and column generation
interchangeably.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

presents the description of the VNE problem. We present the
related work in Section III. Sections IV and V respectively
describe the mathematical formulation of the one-shot embed-
ding problem and its solution based on path generation. Sec-
tion IV presents the evaluation of our proposed solution and
the discussion of the results. Finally, Section VII concludes
this paper.

II. PROBLEM FORMULATION

A. Substrate Network Capacity

We model the SN as an undirected graph denoted by
Gs = (Ns, Ls), where Ns and Ls represent the set of substrate
nodes and links, respectively. Each substrate link luv ∈ Ls

connecting the nodes u and v has a bandwidth capacity Cuv

while each substrate node u ∈ Ns has computation capacity
Cu and a location Locu(x, y)

B. Virtual Network Requests

In the same way, we model the VN as an undirected graph
denoted by Gv = (Nv, Lv), where Nv and Lv represent
the set of virtual nodes and links respectively. Each virtual
link lij ∈ Lv connecting the nodes i and j has a bandwidth
demand Dij while each virtual node i ∈ Nv has computation
demand Di, a location Loci(x, y) as well a constraint on its
location Devi(∆x,∆y) which specifies the maximum allowed
deviation for each of its x and y coordinates2. Constraints
on the location of virtual nodes are aimed at giving SPs the
flexibility to choose the geographical placement of given parts
of their network topologies. This could be as a result of a
given SP introducing specialized services for users in a given
location, or a desire to ensure improved quality of service by
restricting the distance (and hence latency) between a given
pair of nodes.

C. Virtual Network Embedding

The embedding problem consists in the mapping of each
virtual node i ∈ Nv to one of the possible substrate nodes
with in the set Υ(i). Υ(i) is defined as a set of all substrate
nodes u ∈ Ns which have enough available capacity (defined
the difference between the total capacity of a resource and the
amount already allocated) and are located within the maximum
allowed deviation Devi(∆x,∆y) of the virtual node. For a
successful mapping, each virtual node must be mapped and
any given substrate node can only map at most one virtual
node from the same request. Similarly, all the virtual links
have to be mapped to one or more substrate links connecting
the nodes to which the virtual nodes at its ends have been
mapped. Each of the substrate links must have enough capacity
to support the virtual link(s) that go through it. A mapping is
successful if all the virtual links are mapped.

In Fig. 1, we show an example of two VNs being mapped
onto a SN. The resource requirements for each virtual node or
link is also shown. The values in the SN are the total loading
of any given physical node or link. As can be noted from Fig.

2The notation used in this paper is to represent virtual nodes with the letters
i or j and substrate nodes with u or v.

Substrate Network

VN Request 1 VN Request 2

2

7

5

13

25

6

3

8

41

10

23

15

VNE

2

5+1 = 6 4

8

7+3 = 10

15

23

P

Q

A

B

R

Fig. 1: Virtual Network Embedding: Two VNs mapped onto a SN

1, one substrate node can host more than one virtual node (e.g.
node A). A substrate link can also host more than one virtual
link (e.g. link AB), and a given virtual link can span more
than one substrate link (e.g link RP).

In general, the objective in VNE is to map as many VNs
as possible, hence leading to an efficient utilization of SN
resources. For the online VNE problem, there is no knowledge
on the requirements of future VN requests, and as such, one
way of ensuring that as many requests are accepted is by
balancing the overall loading of the SN [2] such that all
substrate resources (nodes and links) are equally likely to
accept resource requests. In the same way, it is worth noting
that due to the lack of information about future virtual network
requests, optimality as referred to in this paper is only based
on the mapping of an arriving virtual network request to a
substrate network, which could possibly already have other
virtual networks already embedded, or for which other virtual
networks may be embedded in the future. Therefore, this
optimality does not represent an optimal embedding solution
considering all possible virtual network requests.

III. RELATED WORK

VNE is a well-studied problem. In what follows, we only
discuss those approaches we consider more closely related
to our proposal. An interested reader is referred to [1] for
a detailed survey on VNE.

A. Two-step Embedding

Some approaches based on two stages, starting with node
mapping and then link mapping, are proposed in [3] and [7].
These algorithms measure the resource of a node or link
by its CPU capacity, or bandwidth without considering the
topological structure of the VNs and the underlying substrate
network. However, the topological attributes of nodes may
have an impact on the success and efficiency of VNE. Cheng
et al. [8] propose a topology-aware node mapping approach
which uses the Markov Random Walk model to rank virtual
and substrate network nodes based on their resource and
topological attributes. The links are then mapped either using
the shortest path (for unsplittable flows), or formulated as
a commodity flow problem for splittable flows. Unlike our

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

work, the above approaches don’t consider location constraints
on virtual nodes, assuming that they can be mapped at any
location in the SN. A coordinated node and link mapping is
proposed in [2]. Although the coordination here improves the
solution space, the mapping is still performed in two separate
stages, hence yielding sub-optimal embedding.

The works in [9]–[12] propose dynamic and distributed
approaches to VN resource allocation, where the actual re-
sources allocated to virtual nodes and links is scaled up and
down based on actual resources utilization as well as resource
availability. However, they do not consider the embedding
stage, assuming that the VN is already mapped to a SN.

B. One-shot Embedding

A one-shot embedding solution based on a multi-agent
system is proposed in [13]. However, this proposal assumes
unbounded SN resources, and all VN requests to be known
in advance. Also, messaging overhead exchanged between the
agents can be detrimental to solution scalability. Zhu et al. [4]
also propose a one-shot mapping solution, assuming infinite
substrate resources, and no constraints on the locations of
nodes. Authors in [14] - [15] propose different approaches
to one-shot VNE assuming that all VN requests are known in
advance (offline solutions), while those in [16] - [17] make
simplifying assumptions with regard to the capacity of the
SN and do not consider constraints on virtual nodes locations.
While most VNE proposals use topologies to represent VN
requests, [18] proposes the use of traffic matrices. However,
the embedding is achieved by alleviating constraints on VN
resources, such as node location. Houidi et al. [19] split
any given VN request across multiple infrastructure providers
and then uses max-flow and min-cut algorithms and linear
programming to find one-shot solutions to the partial VN
graphs. While the embeddings of the split graphs are solved
in one-shot, they do not encompass the original VN request
in its entirety.

Perhaps the the works most related our work are by Jarray
et al. [20] and Hu et al. [21] both of whom apply column
generation to VNE. Jarray et al. apply a column generation
approach to one-shot VNE by assuming that the embedding of
VN requests can be delayed by storing each arriving request
to process them in batches using an auctioning mechanism.
The proposal can therefore be considered to be an offline one.
Hu et al. formulate a one-shot path-based VNE where the
virtual links are represented as commodities. The formulated
mathematical program is then relaxed so as to apply column
generation. However, Hu et al. consider a scenario where the
demand/commodity of any given virtual link may be split over
more than one substrate path. This differs from the proposal
in this paper which solves a harder problem where the flows
are not splittable.

C. Mathematical Programming

Mathematical programming has been applied to a variety
of problems in networking. Xie et al. [22] use mathematical
programming for dynamic resource allocation in networks
while Botero et al. [23] use an optimization technique for

link mapping (assuming that the virtual nodes have already
been mapped to substrate nodes). Unlike all these works,
the mathematical programming formulation proposed in this
paper does not only focus on unsplittable flows, but also
combines both node and link mapping in one stage. The
node mapping step is an important part of VNE since it
determines the efficiency of the link mapping. This is why
such approaches that coordinate these two steps have been
shown to lead to better resource utilization efficiency [2].
Combining these two steps together even further enhances
this efficiency, yet the resulting mathematical program is even
harder to solve. Finally, path generation based formulations
for multi-commodity flow based problems are proposed in a
number of approaches such as [24]. In these formulations the
source and end nodes for each flow are known a priori, which
reduces the complexity of the problem, compared to the one-
shot VNE that we solve in this paper.

D. Summary
To summarize, because of the NP hardness of the VNE

problem, existing one-shot approaches either make simplifying
assumptions such as considering the offline version of the
problem, assuming infinite resources, or ignoring constraints
on the virtual nodes and links, while other proposals solve
the embedding problem in two stages, typically employing a
greedy approach for node mapping and then try to optimize
the link mapping. The approach proposed in this paper differs
from previous work in many aspects. Most applications of
mathematical programming and path generation to routing are
concerned with simpler problems, in which either both the
source and sink nodes are known, in which case the problem
reduces to a load balancing problem, or only consider node
mapping. While the link mapping sub-problem is still NP-
hard for unsplittable flows, it is even harder in the case
of VNE since the source and sink nodes should also be
determined. To the best of our knowledge, this is the first
path-based mathematical programming solution to the one-
shot, unsplittable flow VNE problem.

IV. ONE-SHOT VIRTUAL NETWORK EMBEDDING

The one-shot VNE problem involves performing both node
and link mapping at the same time. In this paper, we use
mathematical programming to achieve this. Specifically, we
consider that VNs arrive one at a time following a Poisson
distribution and have exponentially distributed service times,
and the formulated optimization problem involves the embed-
ding of a single VN at any given time. This way, at every
mapping step, the actual resource availability of all substrate
links and nodes is taken into account when performing a
mapping. For reference, the link-based formulation of the
problem that obtains an optimal solution using mathematical
programming is shown in the appendix. Here, we adopt a path-
based formulation using column generation in order to solve
the problem with much less time and storage requirements.

A. Substrate Network Augmentation
We start by creating an augmented network first introduced

in [2], with each virtual node i connected to each of the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

C

B

G

X

E

F

Y

D

A

Z

Substrate Links

Virtual Links

 Substrate Nodes

Virtual Nodes

Possible virtual to substrate node mappings

Fig. 2: VNE showing Virtual Node Mapping Constraints

substrate nodes in its possible node set Υ(i) by a meta link
[2] liu ∈ Lx, where Lx is the set of all meta links. Then the
aim is to establish a single path pijuv from each virtual node i
to all other virtual nodes j to which it is connected. The path
pijuv is made of two meta links, liu and ljv , and a sub-path in
the SN connecting the substrate nodes u and v. This sub-path
may be made up of one or more SN links. In Fig. 2, we show
a representation of an instance of the problem. In the figure,
XYZ are nodes of a VN, while ABCDEFG are nodes of a
SN. As an example, for virtual link XZ, one possible path
could be XABEZ, and is represented as pxzae . The path pxzae is
a sequence of links in the augmented network that start from
one end of the virtual link to the other. Therefore, in order
to embed the virtual link XZ, we need to determine the three
components of the path, which − for this example − are the
two meta links XA and EZ, and the SN path ABE composed
of two links, AB and BE. The components XA and EZ can be
determined from a virtual to substrate node mapping, while
ABE from a link mapping approach such as shortest path.
In particular, this path example would mean that the virtual
node X is mapped onto substrate node A, the virtual node Z
is mapped onto substrate node E and that the virtual link XZ
is mapped onto the SN path ABE. One difficulty illustrated
in this example comes from the fact that if, for example, we
choose the path XABEZ for virtual link XZ, then the virtual
link XY can only be mapped on a path that includes meta link
XA and not XC. This would in turn require that Y be mapped
onto C, otherwise we would have a sub-optimal solution in
which the virtual link XY uses resources from two substrate
links (AC & CG) instead of a single link (CG). Hence, the
determination of these paths should not be carried sequentially
and independently. As previously mentioned, our aim is to find
the best possible path for each of the virtual links subject to the
mapping requirements described in our problem formulation
(see Section II).

B. LP−P: Path based Formulation −Primal
We formulate the VNE problem as a commodity flow

problem [25], where virtual links are flows that should be
carried by the SN. However, unlike most commodity flow
formulations, in our case, the source node i and terminal

node j for each flow also need to be determined.

Variable and Parameter definitions: In this formulation, we
define a non-negative binary variable f ijuv = [0, Dij] which
represents the unsplittable flow of a virtual link lij ∈ Lv

on a simple substrate path pijuv ∈ P . The indices u, v, i
and j define a path (i − u − v − j) in the augmented SN.
As described in IV (A), these paths are made up of three
components: two meta-links iu and jv, and a SN path from
u to v. The variable f ijuv is binary in that it can only take on
values 0 and Dij , where Dij is the demand of virtual link
lij ∈ Lv . We define P as a set of all the possible substrate
paths, Puv as the set of all paths that use the substrate link
luv ∈ Ls and P ij as the set of all paths that can support the
flow for virtual link lij ∈ Lv . We also define χi

u = [0,1] as a
binary variable equal to 1 if the virtual node i is mapped onto
the substrate node u and 0 otherwise. As mentioned in IV
(A), it is important to note that variables χi

u and χj
v directly

determine the existence or otherwise of meta links iu and jv
for the path pijuv since the meta links are dependent on the
respective node mappings. For example, if χi

u == 0 then the
virtual node i is not mapped onto substrate node u, implying
that the meta link from i to u is non existent, and so is the
path pijuv . Let Auv be the available bandwidth capacity on
the substrate link luv , and Au be the available computation
capacity on node u.

Objective: The objective of the mathematical formulation
(1)−(7) is to balance the resource usage of the SN, by
favoring the selection of those resources with comparatively
higher available capacity. Balancing the loading of the SN
has two advantages; first, it distributes the mapping of a given
VN request over multiple SN resources which avoids a single
VN being majorly affected by single or regional failures in
SN, hence ensuring better VN survivability. In addition, since
the problem we consider in this paper is online, we do not
know in advance the required node locations for VN requests.
Balancing the loading of the SN ensures that at any given
point, each substrate node/link has the same capacity on
average. This avoids situations where a VN request would be
rejected due to one or more of its nodes not being able to be
mapped because substrate nodes in their respective possible
node sets Υ(i) have less resources than other parts of the
SN. As was shown by [2], load balancing leads to a better
acceptance ratio of VNs, which would directly translate in
higher incomes for InPs.

minimize
∑

lij∈Lv

∑
pij
uv∈P

1

Auv
f ijuv +

∑
i∈Nv

∑
u∈Υ(i)

1

Au
χi
u (1)

subject to ∑
u∈Υ(i)

χi
u = 1 ∀i ∈ Nv (2)

∑
i∈Nv

χi
u ≤ 1 ∀u ∈ Ns (3)

∑
pij
uv∈P ij

f ijuv = Dij ∀lij ∈ Lv (4)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

∑
pij
uv∈Puv

f ijuv ≤ Auv ∀luv ∈ Ls (5)

f ijuv −Dijχ
i
u ≤ 0 ∀pijuv ∈ P (6)

f ijuv −Dijχ
j
v ≤ 0 ∀pijuv ∈ P (7)

f ijuv = [0, Dij] ∀pijuv ∈ P

χi
u = [0, 1] ∀i ∈ Nv,∀u ∈ Ns

The first term in the objective (1) is for link mapping, while
the second term is for node mapping. Each of these terms are
divided by the respective capacities to ensure that the substrate
resources with more free resources are preferred. Constraint
(2) ensures that each virtual node is mapped to a substrate
node, while (3) ensures that any substrate node may be used at
most once for a given mapping request. Constraints (4) and (5)
represent the virtual link demand requirements and substrate
link capacity constraints respectively. Specifically, (4) states
that the flow f ijuv on path pijuv should carry the total demand of
the virtual link ij, while (5) states that the flow f ijuv on path pijuv
should be at most equal to the capacity of each substrate link
on that path. From constraint (6), if χi

u == 0 then f ijuv = 0.
If χi

u == 1 then f ijuv = [0, Dij]. This is also true for (7).
These constraints ensure that virtual links and virtual nodes
are mapped at the same time, i.e., a flow f ijuv − using the path
pijuv starting with meta link iu and ending with meta link jv −
is only non-zero if the virtual node i is mapped onto substrate
node u and j is mapped onto v. Together, (6) and (7) ensure
that a flow f ijuv is only non zero if both the two end links iu
AND jv exist.

The formulation in (1)−(7) is intractable for two reasons;
first, the restrictions that variables χi

u and f ijuv only take on
binary values, and then the fact that the number of possible
paths pijuv (and hence the number of variables f ijuv) is very large
(exponential) even for moderately sized networks. Therefore,
solving the problem in its current form is impractical. There
are three possibilities to solving the problem;

1) a relaxation to the constraints on variables χi
u and f ijuv

to take on continuous values,
2) restricting the number of input variables f ijuv (by restrict-

ing the number of paths pijuv).
3) a combination of both the first two approaches.

For the VNE problem as formulated in (1)−(7), a relaxation
would require careful consideration to avoid violating the
requirements that both nodes and links are mapped in one-
shot (since the variables χi

u would no longer be able to restrict
the mapping of virtual nodes to particular substrate nodes), as
well splitting the flows of the virtual links across multiple
links. Therefore, we take the second approach, and employ
path generation, which allows for the use of only a sufficiently
meaningful number of paths, and adding more paths as needed
until a final solution is obtained.

V. PATH GENERATION

Path generation is a method that solves mathematical
programs with a large number of variables efficiently. The
main idea is to solve a restricted version of the program
(the restricted primal problem [26]) - which contains only a
subset of the variables, and then (through the use of the dual
problem [26]) add more variables as needed. Usually, path
generation involves creating an initial solution (restricted set
of variables) which are used in the solution for the restricted
primal problem. Then, solving pricing problems (which are
determined from the dual problem), allows for adding more
variables to improve the initial solution, until either a final
optimal solution is found, or a stopping condition is reached.

The path generation approach taken in this paper is as
follows: we start by creating an initial set of paths using a
two stage node and link mapping. We then use these paths
to solve a dual problem, and use the pricing problems to
determine a set of paths to add to the initial solution. These
paths are then used to solve a restricted primal problem to
obtain a final solution. Therefore, our proposal avoids the
usual iteration required in a path generation approach where
the primal and dual problems are solved sequentially, many
times, instead preferring only to perform a single iteration. In
the next subsections, we propose a method for determining
the initial set of paths, derive the pricing problems, and then
describe the overall algorithm proposed in this paper.

A. Initial Solution

An initial solution (Init−Sol) is determined as a set of
paths P ′ in the augmented SN, with each path pijuv ∈ P ′

able to support the flow f ijuv of virtual link lij . Each of these
paths must be able to meet the VN mapping conditions as
formulated in the primal problem. Considering the example
in Fig. 2, since we have two virtual links, an initial solution
would have two paths, one for each virtual link. Examples of
these paths could be XABEZ and XACY for virtual links XZ
and XY respectively. In order to determine such a path, say
for virtual link XZ, the approach in this paper is as follows:
we start by performing a node mapping, which for this
example, would map virtual nodes X and Z onto substrate
nodes A and E respectively. This step gives us the meta links
XA and EZ. In this subsection, we propose a novel node
mapping solution LP−N for determining XA and EZ. The
next step involves determining the path ABE in the SN. This
is done by using Dijkstra’s algorithm, with the constraint
that each link on the path should have enough capacity to
support the virtual link under consideration. The complete
path is determined by joining meta links XA and EZ to the
respective ends of ABE.

LP−N: Node Mapping: LP−N is based on mathematical
programming. It is formulated in such a way that mapping
of any given virtual node is relatively biased towards each
substrate node by a weight. The determination and use of the
weights is discussed in what follows.

Objective: It is noteworthy that, essentially, LP−N is

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

10

20 70 50

50 60

G

Y

A

C

X

Fig. 3: Node-Link Weighted Averages

aimed at achieving an initial node and link mapping. As
such, many other state-of-art two-step approaches [1] could
be used for this purpose. However, the authors could not find
a previous two-stage mapping approach that simultaneously
achieves both objectives considered in our formulation: The
first objective is to keep the computation time of the initial
solution as low as possible by including only the possible
virtual node to substrate node combinations. Secondly, as
explained later in this section, we minimize the possibility
of failure at the link mapping stage, by making the node
mapping aware of the link mapping stage through the use of
weights Wi and Wu.

Variable definition: As before, χi
u is a binary variable

equal to 1 when the virtual node i is mapped onto substrate
node u and 0 otherwise.

minimize
∑
i∈Nv

∑
u∈Υ(i)

Wi

Wu
χi
u (8)

subject to: ∑
u∈Υ(i)

χi
u = 1 ∀i ∈ Nv (9)

∑
i∈Nv

χi
u ≤ 1 ∀u ∈ Ns (10)

χi
u = [0, 1] ∀i ∈ Nv,∀u ∈ Ns

Constraints (9) and (10) are the same as (2) and (3). The
weights Wi and Wu are dynamically determined for each
virtual and substrate node respectively. The motivation to use
such weights is from the need bias or coordinate the mapping
of the nodes to the following link mapping step. This has been
shown by related works to improve the mapping efficiency [2]
by avoiding the use of a high amount of resources for the link
mapping phase. In our proposal, this is particularly important
to avoid the possibility that we fail to obtain an initial solution
due to unavailable SN resources. Therefore, Wu is defined
as the weighted average of the available capacities of all the
substrate links connected to u. Similarly, Wi is defined as
the weighted average of the demand of all the virtual links
connected to i. To illustrate the idea behind these weighted
averages, consider Fig. 3, which is a subset of the topology
represented in Fig. 2. The values beside each link represent

the available link bandwidths and link demands respectively.
As an example, considering the virtual node X,

WX = 20×

(
20

20 + 10

)
+ 10×

(
10

20 + 10

)
= 16.67.

In the same way for substrate node C,

WC = 50×

(
50

50 + 60 + 70

)
+ 60×

(
60

50 + 60 + 70

)
+

70×

(
70

50 + 60 + 70

)
= 61.11

The reason for using this ratio as a weight is to ensure that
those substrate nodes that are connected to many substrate
links with higher available resources are usually preferred, and
that in case two or more virtual nodes have a given substrate
node in their possible node set (such as X and Y in Fig. 2), then
the substrate node would always be allocated to that virtual
node with the highest weighted average link demand. This
achieves some level of coordination between the node mapping
and link mapping phases and thereby reduces the probability
of rejecting link mapping requests.

We note that there could be instances where the weighted
averages lead to selecting substrate nodes with less good links,
especially when the links have widely differing residual capac-
ities. For example, a node connected to two links with residual
capacities 80 and 10 respectively will have a W1 = 72, while
a node connected to two links with residual capacities 60 and
70 respectively will have a W2 = 65. In this case, the first
node will be selected yet the second node could be a better
choice. One simple solution to handle such scenario is to use
the sum of two averages: the weighted average and a simple
average. However, it is worth mentioning that in our approach
network embedding is done in such a way that the average
loads of SN nodes and links are balanced, this way, avoiding
scenarios where some node and/or links have widely differing
residual capacity. The procedure, Init-Sol, for determining the
initial solution is shown in Algorithm 1.

B. Pricing Problem

To determine which paths should be added to the initial set
so as to improve the solution, we need to solve the pricing
problems for LP−P. In order to identify the pricing problems
we first formulate the dual problem LP−D for the primal
problem LP−P. The formulation of a dual problem from a
primal can be obtained in five steps [27].

1) Creating a dual variable for every primal constraint,
2) Creating a dual constraint for every primal variable,
3) The right-hand sides of primal constraints become coef-

ficients for the dual objective,
4) The coefficients of the primal become right-hand sides

of the dual constraints,
5) If the primal problem is a maximisation problem, the

dual is a minimisation problem.
In Table I, we summarize these steps, giving the bounds for
the resulting dual constraints and variables for all possible
cases of primal variables and constraints respectively. These

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

Algorithm 1 Init−Sol (Gv(Nv, Lv), Gs(Ns, Ls))

1: for i ∈ Nv do
2: Determine Candidate Node Set, Υ(i)
3: if Υ(i) = ∅ then
4: Reject Request
5: end
6: end if
7: Calculate Wi

8: end for
9: for u ∈ Ns do

10: Calculate Wu

11: end for
12: Solve : LP-N
13: for lij ∈ Lv do
14: for u ∈ Υ(i) do
15: if χi

u = 1 then
16: Meta Link 1: l1 = iu
17: Start Node, s = u
18: end if
19: end for
20: for v ∈ Υ(j) do
21: if χj

v = 1 then
22: Meta Link 2: l2 = jv
23: End Node, t = v
24: end if
25: end for
26: LinkMapping: ps = Dijkstra

(
s, t,Gs(Ns, Ls)

)
27: Create Path: pijuv = l1 + ps + l2
28: Add pijuv to P ′

29: end for

conventions reflect the interpretation of the dual variables
as shadow prices of the primal problem. A less-than-or-
equal-to constraint, normally representing a scarce resource,
has a positive shadow price, since the expansion of that
resource generates additional profits. On the other hand,
a greater-than-or-equal-to constraint usually represents an
external requirement (e.g., demand for a given resource).
If that requirement increases, the problem becomes more
constrained; this produces a decrease in the objective function
and thus the corresponding constraint has a negative shadow
price. Finally, changes in the right hand side of an equality
constraint might produce either negative or positive changes
in the value of the objective function. This explains the
unrestricted nature of the corresponding dual variable.

Dual Variables definitions: To determine the dual program,
we start by relaxing the bounds of the variables χi

u and f ijuv
such that χi

u ≥ 0 and f ijuv ≥ 0. Then, following the five
steps stated above, we define six dual variables as follows: λi
for the virtual node constraints (2), µij for the virtual links
demand constraints in (4), ηu >= 0 substrate node constraints
in (3), γuv >= 0 substrate links available capacity constraints
in (5), σiu >= 0 for simultaneous node and link mapping
constraint constraint (6) and τjv >= 0 for constraint (7).
Since most results of duality for linear programs do extend to

TABLE I: Relationship between dual and primal problems

Primal Dual

Objective Function

Maximisation Minimisation

Variable bounds Constraint bounds

−∞ ≤ i ≥ +∞ i =

i ≥ 0 i ≥
i ≤ 0 i ≤

Constraint bounds Variable bounds

j = −∞ ≤ j ≥ +∞
j ≥ j ≤ 0

j ≤ j ≥ 0

We use A←X to mean that node virtual node X is mapped

onto substrate node A

(A←X, B←Z), (A←X, E←Z), (A←X, D←Z)

(C←X, B←Z), (C←X, E←Z), (C←X, D←Z)

B

D Z

X

E

C

A

Fig. 4: Possible substrate node combinations for virtual link XZ

integer programming [28], the dual formulation in this paper
is based on [27].

The objective of the dual formulation (11)−(13) is to obtain
a mathematical program that produces a maximized value as
close as possible to that of its original primal program for any
instance of the variables. Therefore, the dual of the primal
formulation in (1)−(7) is:

maximize
∑
i∈Nv

λi +
∑

lij∈Lv

Dijµij −
∑
u∈Ns

ηu−
∑

luv∈Ls

Auvγuv

(11)
subject to

λi +
∑

pij
uv∈P

(σiu + τjv)− ηu ≤
1

Au
∀liu ∈ Lx (12)

µij−σiu−
∑

luv∈pij
uv

γuv−τjv ≤
∑

luv,liu∈pij
uv

1

Auv
∀pijuv ∈ P

(13)
The pricing problems are shown in (12) and (13). From (12),

the pricing condition for substrate nodes can be determined as:

λi +
∑

pij
uv∈P

(σiu + τjv) >
1

Au
+ ηu

However, since the variables χi
u are much fewer compared

to f ijuv , we include all the possible substrate nodes for each

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

virtual node in the restricted primal problem. This eliminates
the need for node pricing and we are left to deal with only
the link pricing problem (13):

µij >
∑

luv,liu∈pij
uv

1

Auv
+ (σiu +

∑
luv∈pij

uv

γuv + τjv)

This pricing problem can be solved using the shortest path
algorithm. Any path pijuv = Siu + (luv ∈ Puv) + Tjv in the
augmented SN whose length with respect to the dual variables
(this means that the costs of the substrate links luv ∈ Puv are
γuv , those of meta links Siu are σiu and those of Tjv are
τjv) is smaller than µij satisfies the inequality above, and has
the potential to improve the solution. However, a change in
path for any given virtual link could necessitate a change in
the mapping of one of its end nodes, which would change
the prices and feasibility of mappings for other virtual links
connected to it. For example in Fig. 2, if the virtual node X is
mapped onto substrate node C, all the paths for both links XZ
and XY go through C. If the path for say XZ is changed to go
through A, it would either mean that the path for XY should
also be changed to go through A, otherwise this path cannot
be used to give a feasible and improved solution. Therefore,
addition of paths individually for each virtual link does not
guarantee that each of the added paths would still lead to
a feasible solution, and for as long as the added path cannot
yield a feasible solution, this path cannot lead to improvement
in the solution of the restricted primal problem. In this case,
there would be no guarantee that the pricing problems can be
solved in polynomial time, as it could require quite a number
of iterations before enough paths are added to actually improve
the solution.

In this paper, instead of adding individual paths for each
virtual link in each iteration of the path generation algorithm,
we include all the possible shortest path combinations after
solving the formulation (11) − (13). We use Fig. 4, which
is extracted from Fig. 2, to illustrate this for the case of
virtual link XZ. Since the node X has two possible substrate
nodes and virtual node Z has three possible substrate nodes,
then the possible combinations for these nodes are 6. In our
pricing solution, we determine the shortest path − based on
the weights in (14) for each of these 6 possible end node
combinations.∑

luv,liu∈pij
uv

1

Auv
+

(
σiu +

∑
luv∈pij

uv

γuv + τjv

)
(14)

This is done for all the virtual links, and all the corresponding
paths are added to the restricted primal problem. However,
the number of paths added for each pricing iteration would be
too big to handle if many iterations are carried out. Even the
Dijkstra algorithm takes quite some time to find the shortest
paths. For this reason, we perform only one round for the
substrate paths and use the resulting shortest paths based on
the dual problem to solve LP−P to obtain the final solution.
As we show in the simulation results, the solution obtained is
near optimal.

The proposed approach, Final−Sol, for determining the
final solution is shown in Algorithm 2.

Algorithm 2 Final−Sol(Gv(Nv, Lv), Gs(Ns, Ls))

1: Create Augmented Substrate Network
2: Initial Paths Set: P ′ ← Solve Init−Sol
3: Solve LP−D(P ′)
4: for lij ∈ Lv do
5: for u ∈ Υ(i) do
6: for v ∈ Υ(j) do
7: P ′ ← (P ′ +GetShortestPath(i, u, v, j))
8: end for
9: end for

10: end for
11: Solve LP−P(P ′)

Example: To illustrate the details of Final−Sol in algorithm
2, we use a simple running example based on Fig. 2 as well
as the flow diagram in Fig. 5a. The aim of the example is
to illustrate the sequence of the proposed algorithm rather
than its effectiveness, which is evaluated in the next section.
As such, we keep it simple by avoiding the details of how
the actual mathematical programs are solved. In Fig. 5b, we
show a possible initial solution (black dotted lines) where
virtual nodes X, Y and Z have been mapped to substrate
nodes A, G and E respectively. The virtual links XY and
XZ have been mapped onto substrate paths ACG and ABE
respectively. Therefore, based on the discussion in section
IV(A), the initial solution is made up of two paths XACGY
and XABEZ in the augmented substrate network. In Fig.
5a, these two paths make up P1. With these paths, the dual
problem (LP-D(P1)) is solved. The values of σiu, γuv and
τjv along each link in Fig. 5b represent hypothetical values
that could result from solving LP-D. As explained above, and
illustrated in Fig. 4, the next step is then, for each virtual
link, to find the shortest path in the substrate network for all
the possible virtual-to-substrate node mappings. Using the
values in Fig. 5b, the these shortest paths are determined
using Dijkstra’s algorithm as shown in Table II3 for the 6
combinations (see Fig. 4) of the virtual link XZ. Using a
similar process, the paths corresponding to the virtual link
XY are determine. These paths (excluding those which were
already in the initial solution such as XABEZ) constitute P2

in Fig. 5a. The combined paths (P1 + P2) are then used as
inputs to solve a restricted primal problem to obtain a final
solution.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the performance of our proposed approach, we
implemented a discrete event simulator in Java, which uses
the tool Brite [29] to generate substrate and VN topologies.
We used the tool ILOG CPLEX 12.4 [30] to solve the
mathematical programs. Simulations were run on Windows 8

3The reader should note that for representation simplicity, the terms 1/Auv

in (14) are not included in the shortest path summations in Table II. These
terms represent the reciprocal of the available bandwidth on each link along
the shortest path in the augmented substrate network.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

Final VNE
Solution

Djikstra
Shortest Paths

VN Request

Initial VNE
Solution

Paths, P1

Prices

Paths, P2Paths, (P1+P2)

Paths, P1

Dual Problem

Solution

Primal Problem
Solution

1 2

34

(a) Summary of Path generation-based VNE Approach

B

X

E A

Z

C D

Y

G F

𝜇𝑋𝐴 = 1

𝜇𝑋𝐶 = 3

 𝜇𝑌𝐶 = 1

𝜇𝑌𝐺 = 2

𝜏𝐵𝑍 = 1.5

𝜏𝐸𝑍 = 3

𝜏𝐷𝑍 = 2

𝛾𝐶𝐺 = 4

𝛾𝐴𝐶 = 3

𝛾𝐴𝐵 = 2

𝛾𝐵𝐸 = 5

𝛾𝐷𝐹 = 5

𝛾𝐶𝐷 = 4

𝛾𝐵𝐷 = 2

(b) Initial Solution and Dual Pricing of Links

Fig. 5: Running Example

TABLE II: Shortest Paths for Virtual Link XZ

Path Values Along Path Total Path Length

XABEZ 1 + 2 + 5 + 3 11

XABZ 1 + 2 + 1.5 4.5

XABDZ 1 + 2 + 2 + 2 7

XCZBEZ 3 + 3 + 2 + 5 + 3 16

XCABZ 3 + 3 + 2 + 1.5 9.5

XCDZ 3 + 4 + 2 9

TABLE III: Brite Network Topology Generation Parameters

Parameter Substrate Network Virtual Network

Name (Model) Router Waxman Router Waxman

Number of nodes (N) 100 and 20 [15-25] and [3-10]

Size of main plane (HS) 500 500

Size of inner plane (LS) 500 500

Node Placement Random Random

GrowthType Incremental Incremental

Neighbouring Nodes 3 2

alpha (Waxman Parameter) 0.15 0.15

beta (Waxman Parameter) 0.2 0.2

BWDist Uniform Uniform

TABLE IV: Performance Quality Evaluation Algorithms

Code Mapping Method

GNMSP Greedy Node Mapping and Shortest Path (SP) for Links [3]

CNMMCF Coordinated Node and MCF for Link Mapping [2]

VNA-1 One-Shot Mapping [4]

TANMSP Topology-aware Node Mapping and SP for Links [8]

PaGeViNE Path Generation based Virtual Network Embedding

ViNEOPT Link based Optimal Virtual Network Embedding

Pro running on a 4.00GB RAM, 3.00GHz Processor Machine.
Both substrate and VNs were generated on a 500× 500 grid.
The CPU and bandwidth capacities of substrate nodes and
links are uniformly distributed between 50 and 100 units
respectively. The CPU demand for VN nodes is uniformly dis-
tributed between 2 and 10 units while the bandwidth demand

of the links is uniformly distributed between 10 and 20 units.
The parameters used in Brite to generate network topologies
are shown in Table III. The parameters α and β are Waxman-
specific exponents, such that, 0 < α ≤ 1, 0 < β ≤ 1, (α, β) ∈
R. α represents the maximal link probability while β is used
to control the length of the edges. High values of alpha lead
to graphs with higher edge densities while high values of beta
lead to a higher ratio of long edges to short ones. The values
used in this paper are the default values in the Brite router
Waxman model used in [29]. Each virtual node is allowed to
be located within a uniformly distributed distance between 100
and 150 units of its requested location. For embedding quality
evaluations, two possible sets of network sizes have been used.
One involves a SN with 100 nodes and VNs with number of
nodes varied uniformly between 15 and 25, while the other
has a SN with 20 nodes and VNs with number of nodes
varied uniformly between 3 and 10. The need for different
network sizes will be explained in a later subsection. For
these simulations, we assumed Poisson arrivals at an average
rate of 1 per 3 time units. The average service time of the
requests is 60 time units and assumed to follow a negative
exponential distribution. The experiments are performed for
1500 arrivals. For the time complexity evaluation, the number
of nodes for the SN is gradually increased from 20 to 100,
and each simulation setup is repeated 20 times and average
values determined.

B. Performance Metrics

1) Solution Quality: Three performance indicators − Ac-
ceptance ratio, Node utilization and Link utilization − are used
for quality evaluation. The acceptance ratio gives a measure
of the number of VN requests accepted compared to the total
requests. We define the average node utilization as the average
proportion of the total substrate node capacity that is under use
at any given time. In the same way, we define average link
utilization as the average proportion of the total substrate link
capacity that is under use at any given time.

2) Solution Complexity: We define the time complexity
of a given solution as the average time to complete the
computation.

3) Embedding Cost and Revenue: We define the costs and
revenue from embedding a given VN the same way as a related

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

0.0

0.2

0.4

0.6

0.8

1.0

100 400 700 1000 1300

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Number of Arrivals

GNMSP VNA-I TANMSP

CNMMCF PaGeViNE ViNEOPT

Fig. 6: Average Acceptance Ratio - 20 SN Nodes

A
cc

ep
ta

n
ce

 R
at

io

0

0.2

0.4

0.6

0.8

1

100 400 700 1000 1300

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Number of Arrivals

GNMSP VNA-I TANMSP

CNMMCF PaGeViNE

Fig. 7: Average Acceptance Ratio - 100 SN Nodes

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Arrival Rate

GNMSP VNA-I

TANMSP CNMMCF

PaGeViNE ViNEOPT

Fig. 8: Effect of VN Arrival Rate on Acceptance Ratio

0.0

0.1

0.2

0.3

0.4

0.5

100 400 700 1000 1300

N
o

d
e
 U

ti
lis

a
ti
o

n

Number of Arrivals

GNMSP VNA-I TANMSP

CNMMCF PaGeViNE ViNEOPT

Fig. 9: Average Node Utilisation

0.0

0.2

0.4

0.6

100 400 700 1000 1300

L
in

k
 U

ti
lis

a
ti
o

n

Number of Arrivals

GNMSP VNA-I TANMSP

CNMMCF PaGeViNE ViNEOPT

Fig. 10: Average Link Utilisation

0.0

0.2

0.4

0.6

1 2 3 4 5

L
in

k
 U

ti
lis

a
ti
o

n

Arrival Rate

GNMSP VNA-I TANMSP

CNMMCF PaGeViNE ViNEOPT

Fig. 11: Effect of VN Arrival Rate on Link Utilization

work [2]. In particular, we define revenue, R
(
Gv(Nv, Lv)

)
as the benefit to the SN for accepting the VN request
Gv(Nv, Lv). As formulated in (15), it is the weighted sum
of the link and node demands for the VN.

R

(
Gv(Nv, Lv)

)
=
∑
i∈Nv

Di +
∑

luv∈Lv

Dij (15)

Similarly, in (16), we define an embedding cost

C

(
Gv(Nv, Lv)

)
as the sum of total substrate resources

that are allocated to the VN Gv(Nv, Lv). κu and ξuv are
parameters that represent the relative unit costs of substrate
nodes and links respectively, where the virtual nodes and links
are mapped.

C

(
Gv(Nv, Lv)

)
=
∑
i∈Nv

κuDi +
∑

lij∈Lv

∑
luv∈Ls

ξuvf
ij
uv (16)

C. Comparisons

We compare the performance of our solution with closely
related solutions. In particular, four representative solutions
from the literature are chosen. We name and describe the
compared solutions in table IV. These solutions were slightly
modified to fit into our formulation of the problem. Specif-
ically, unsplittable flows, constraints on SN capacities and
constraints on virtual node locations were applied. We also
implemented a baseline formulation of the optimal one-shot
mapping (see Appendix).

Since ViNEOPT requires a very long time (in excess of
1 hour for a single embedding involving a SN of 60 nodes
and a VN of 10 nodes) to perform an embedding, simulations
evaluating this algorithm have been restricted to SNs with 20

nodes and VNs with nodes from 3 − 10. However, an extra
simulation for acceptance ratio using larger sized networks has
been performed so as to reflect more practical network sizes.
This simulation excludes ViNEOPT.

D. Results

1) Solution Quality: From the graphs in Fig. 6 it is evident
that PaGeViNE achieves an average acceptance ratio close to
that obtained by the optimal solution ViNEOPT. In addition
Fig. 6 and Fig. 7 show that PaGeViNE outperforms state-of-
the-art solutions in terms of average acceptance ratio. These
two figures also confirm that the embedding efficiency of
PaGeViNE is not affected by increasing the size of substrate
and VNs. In addition, it can be observed from Fig. 8 that
even as the arrival rate of VNs increases, PaGeViNE continues
to perform comparable to ViNEOPT and better than the
four other approaches. The fact that CNMMCF is under-
performing PaGeViNE with respect to the average acceptance
ratio and resource utilization can be attributed to the fact
that CNMMCF is using more resources at the link mapping
stage since it performs node and link mappings separately.
For VNA-1, while the node and link mapping is done in one
shot, they are carried out sequentially, considering specific
clusters of the SN each time. It is therefore expected that the
results would not be as good as those achieved by a global
solution based on mathematical programming. It can also be
observed that TANMSP, which uses the topology information
to determine node mapping performs better than VNA-1 and
GNMSP. However, since it still falls short of CNMMCF which
determines the node mapping from a mathematical program.

It is also evident from the graphs in figures 9 and 10
that PaGeViNE achieves a better utilization ratio for substrate
node and link resources compared to other solutions. However,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

0

20

40

60

80

100

20 40 60 80 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
o

n
d
s
)

Number of Substrate Network Nodes

GNMSP

VNA-I

TANMSP

CNMMCF

PaGeViNE

ViNEOPT

Fig. 12: Average Computation Time

 1

 4

 16

 64

 256

 1,024

 4,096

 16,384

 65,536

GNMSP VNA-I TANMSP CNMMCF PaGeViNE ViNEOPTC
o
m

p
u
ta

ti
o
n
 T

im
e
 in

 m
ill

is
e
c
o
n
d
s
 (
L
o
g
 2

S

c
a
le

)

Fig. 13: 95% Confidence Interval Error Bars

0

10

20

30

40

50

60

To
ta

l E
m

b
ed

d
in

g
C

o
st

0

10

20

30

40

50

60

70

0 500 1000 1500

T
o

ta
l
E

m
b

e
d

d
in

g
 C

o
s
t

Number of Arrivals

GNMSP VNA-I

TANMSP CNMMCF

PaGeViNE ViNEOPT

Fig. 14: Cummulative Embedding Cost

0

30

60

90

120

150

180

0 500 1000 1500

T
o

ta
l
E

m
b

e
d

d
in

g
 R

e
v
e

n
u

e

Number of Arrivals

GNMSP VNA-I

TANMSP CNMMCF

PaGeViNE ViNEOPT

Fig. 15: Cummulative Embedding Revenue

0

20

40

60

80

100

120

0 500 1000 1500

T
o
ta

l
E

m
b
e
d
d
in

g
 P

ro
fi
t

Number of Arrivals

GNMSP VNA-I

TANMSP CNMMCF

PaGeViNE ViNEOPT

Fig. 16: Cummulative Embedding Profit

0

20

40

60

80

100

120

1 2 3 4 5

T
o
ta

l
E

m
b
e
d
d
in

g
 P

ro
fi
t

Arrival Rate

GNMSP VNA-I

TANMSP CNMMCF

PaGeViNE ViNEOPT

Fig. 17: Effect Arrival Rate on Profit

we note that CNMMCF has a link utilization ratio that is
comparatively close to that of PaGeViNE. Finally, it is evident
from Fig. 11 that the utilisation of the resources is almost
un affected by the arrival rate. This confirms the fact that
the rejection of VN requests is not caused by depletion of
resources but rather by inefficient embedding which either
fails due to bottleneck nodes. This is why mathematical
programming-based algorithms which have global knowledge
of the embedding perform better.

2) Solution Complexity: With respect to time complexity,
the graphs in Fig. 12 show that the running times of GNMSP,
VNA-1 and TANMSP are comparatively lower than those of
PaGeViNE. Once again, this can be explained by the fact that
these two solutions do not solve a mathematical program as
PaGeViNE does. We also note that the computation time of
PaGeViNE is slightly higher than that of CNMMCF. This
can be attributed to the fact that PaGeViNE solves three
mathematical programs, while CNMMCF solves only two.
Moreover, it is expected that solving the problem in one-shot
requires more computation than solving it in two stages, since
some of the mathematical programs solved in PaGeViNE are
binary. With regard to ViNEOPT we see that the computation
time quickly grows exponentially. In fact, ViNEOPT could not
find a solution even after 1 hour for 60 substrate nodes4. We
therefore note a significant improvement in time complexity
of PaGeViNE compared to ViNEOPT. These simulations were
each repeated 20 times, and the average time determined in
each case. In Fig. 13, we show the 95% confidence intervals of
the computation time for a SN with 50 nodes. The small error
values in each of these graphs further confirms the profile in
Fig. 12.

4Once again, this is why the simulations for acceptance ratio were split
into one with 20 SN nodes and another with 100 substrate nodes.

3) Embedding Cost, Revenue and Profit: Figs. 14, 15
and 16 show the cumulative embedding costs, revenue and
profit. The profit is the difference between the revenue and
cost of embedding a given VN. We note that PaGeViNE
achieves a profitability close that of ViNEOPT, which is
considerably higher than that of the compared state-of-art
approaches. We also note CNMMCF achieves a higher
profitability than VNA-1, TANMSP and GNMSP. It is worth
noting that these profiles are similar to those obtained from
the acceptance ratios of the three approaches. This means
that the superiority of our approach is not based on accepting
VNs with less resources requirements which would be less
profitable for the physical resource providers. The fact that
VNA-1, TANMSP, GNMSP and CNMCMF obtained much
lower embedding costs is due to rejecting most of the VN
requests, which is further confirmed by the revenue obtained,
and hence profitability. In Fig. 17, we evaluated the effect of
the arrival rate on profitability, noting that as the arrival rate
is increased, the profitability reduces. This is not surprising
since an increase in the arrival rate ensures that most of the
arriving VN requests in the simulation time are not accepted
due to lack of resources. This profile is consistent with that
of the acceptance ratio is Fig. 8.

Effect of Initial Solution: In Fig. 18, we evaluate the
proposed initial solution. In particular, the effect of the initial
solution on the computation time for a substrate network
of 20 nodes, and the acceptance ratio after the arrival of
1,500 VN requests are shown. It can be observed that
the proposed initial solution achieves the balance between
time complexity and embedding quality. While it performs
worse than GNMSP, VNA-1 and TANMSP in terms of
computation time, it outperforms them on solution quality.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

Acceptance Ratio after 1500 Arrivals
0.26
0.38
0.47
0.61
0.45
0.49
0.55
0.56
0.91
0.70
0.97

12 48 107

537

1,401 1,498
1,632 1,640

1,869

2,856

3,621

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0.00

0.20

0.40

0.60

0.80

1.00

Computation time (milliseconds) for 20 SN Nodes

Acceptance Ratio after 1500 VN Arrivals

Fig. 18: Evaluation of the Initial Solution

80 90 100
68 0.9238976 0.923901

62 0.9662 0.9662
56 75,010 92,544
57 75,257 75,257

0

20

40

60

80

100
Computation time (Seconds) for 50 SN Nodes

0.84

0.92

1.00

10 20 30 40 50 60 70 80 90 100
Number of Iterations

PaGeViNE ViNEOPT

Computation time for 20 SN Nodes

Fig. 19: Effect of Number of Iterations

Even more, it outperforms CNMMCF both on computation
time as well as solution quality. The reason for this slightly
better performance can be attributed to the fact that in
CNMMCF node mapping is finalized by mapping each
virtual node individually, which could sometimes lead to
failures in embedding especially if more than one virtual
node compete for a given substrate node. We also evaluated
the performance of PaGeViNE in case the initial solution
is changed. For example, PaGeViNE(GNMSP) means that
GNMSP is used to determine the initial solution before
applying path generation. These results show that PaGeViNE
is dependent on an initial solution for both solution quality
as well as computation time. With regard to the computation
time, this dependence can be explained by the fact that the
initial solution as well as the main PaGeViNE mathematical
programs are solved sequentially. This means that if the
computation of the initial solution takes longer, the overall
solution will take longer. Similarly, since we do not allow
the algorithm to run to completion, the quality of the initial
solution will determine that of the final solution in two ways
(1) in some cases, the initial solution just fails to even find
a start solution, or (2) if the obtained initial solution is not
good enough, the improvement in one iteration is not as
good as it could be. These aspects are all confirmed by Fig. 18.

Effect of Number of Iterations: Finally, Fig. 19 is aimed at
justifying our decision to perform a single iteration rather than
having an iterative approach. From the Fig. we can observe
that as the number of iterations is increased, the computation
time increases more rapidly than does the solution quality.

E. Limitations
The mathematical formulation (1)−(7) involves solving a

binary program. This problem is NP-hard in the general

case, and only exponential algorithms are known to solve it
in practice [31]. Our approach is to reduce the number of
input variables to the program using path generation. While
a significant improvement in computation time is achieved
compared to the optimal solution, more work can be done for
instance seeking a relaxation to the program which permits to
solve it in polynomial time. We however note that in practice
there are high performance tools [30] for solving binary
programs. In particular, we have noted that the initial solu-
tion also contributes significantly to the overall computation
complexity, and hence a more efficient heuristic for the same
purpose could possible further enhance the results obtained
in this paper. In addition, it would be interesting to make a
mathematical analysis on the bounds of the computation time
savings achieved in this paper.

VII. CONCLUSION

In this paper we have proposed a VNE solution which
differs from previous solutions by performing node and link
mappings in one shot using optimization theory and path
generation. Our path generation based approach first obtains
an initial solution by coordinating the node and link map-
ping stages, and then enhances this solution by carrying out
only one round of pricing for the dual variables to obtain
the final solution. Through extensive simulations, we have
shown that our approach has a comparative advantage over
previous approaches in terms of solution quality, achieving
a comparatively superior acceptance ratio as well as VNE
revenue, which directly leads to higher profitability for SN
providers. The acceptance ratio is atleast 95% of that obtained
by the optimal solution. In addition, our approach significantly
reduces solution computation time compared to the optimal
one (achieving a 92% saving in computation time for SNs of

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

50 nodes), and that this time complexity is comparable to that
of related works.

Looking at the future, there are several possible research
avenues. With regard to time complexity, it would also be
interesting to propose relaxations to the mathematical pro-
grams in order to ensure polynomial time convergence. For
this purpose, we are currently investigating the feasibility of
using a combination of Tabu Search and path relinking to
further improve the solution time. In addition, to optimize
resource allocations over time, we are exploring possibilities of
modeling the substrate network state as a markovian decision
process [32], and by assigning state probabilities and transition
rewards be able to bias the mapping of virtual resources to
more appropriate resources. Finally, we intend to extend our
proposed solution to a multi-domain VNE scenario [33] and
to consider failures in the SN [34], [35].

ACKNOWLEDGEMENT

The authors are grateful to the editors as well as anonymous
reviewers whose insightful comments and suggestions led to
a significant improvement in this paper. This work has been
supported in part by FLAMINGO, a Network of Excellence
project (318488) supported by the European Commission un-
der its Seventh Framework Programme and project TEC2012-
38574-C02-02 from Ministerio de Economia y Competitivi-
dad.

APPENDIX
VINEOPT

This is the link based formulation of the one-shot optimal
VNE problem. We define f ijuv as the flow of a virtual link
lij ∈ Lv on the link luv ∈ (Ls∪Lx). Lx is the set of all meta
links in the augmented SN.

minimize
∑

lij∈Lv

∑
luv∈(Ls∪Lx)

1

Auv
f ijuv +

∑
nv∈Nv

∑
ns∈Ns

1

Ans

χnv
ns

subject to

Node Mapping Constraints∑
ns∈Ns

χnv
ns

= 1 ∀nv ∈ Nv

∑
nv∈Nv

χnv
ns
≤ 1 ∀ns ∈ Ns

f ijuv −Dijχ
i
u ≤ 0 ∀uv ∈ Lx,∀lij ∈ Lv

f ijuv −Dijχ
j
v ≤ 0 ∀uv ∈ Lx,∀lij ∈ Lv

Capacity Constraints∑
ij∈Lv

f ijuv ≤ Auv ∀luv ∈ (Ls ∪ Lx)

∑
uv∈Lv

f ijuv = Dij ∀lij ∈ Lv

Flow Conservation Constraints

Source Nodes∑
k∈Ns

f ijik −
∑
k∈Ns

f ijki = Dij ∀lij ∈ Lv

Sink Nodes∑
k∈Ns

f ijjk −
∑
k∈Ns

f ijkj = −Dij ∀lij ∈ Lv

Intermediate Nodes∑
u∈Ns

f ijuv −
∑
u∈Ns

f ijuv = 0 ∀lij ∈ Lv,∀v ∈ Ns

Domain Constraints

f ijuv = [0, Dij] ∀lij ∈ Lv,∀luv ∈ (Ls ∪ Lx)

χi
u = [0, 1] ∀i ∈ Nv,∀u ∈ Ns

REFERENCES

[1] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[2] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206 –219,
feb. 2012.

[3] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[4] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network re-
sources to virtual network components,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
2006, pp. 1–12.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
and P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Operations Research, vol. 46, no. 3, pp. pp. 316–329,
1998.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[7] J. Lu and J. Turner, “Efficient Mapping of Virtual Networks onto a
Shared Substrate,” Washington University in St. Louis, Tech. Rep., 2006.

[8] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, Apr.
2011. [Online]. Available: http://doi.acm.org/10.1145/1971162.1971168

[9] J. He, R. Zhang-shen, Y. Li, C. yen Lee, J. Rexford, and M. Chiang,
“Davinci: Dynamically adaptive virtual networks for a customized
internet,” in in Proc. CoNEXT, 2008.

[10] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Claeys, F. De Turck, and
S. Latre, “Design and evaluation of learning algorithms for dynamic
resource management in virtual networks,” in Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS),
ser. NOMS2014. IEEE, 2014.

[11] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Claeys, F. De Turck, and
J. Famaey, “Neural network-based autonomous allocation of resources
in virtual networks,” in Proceedings of the European Conference on
Networks and Communications (EuCNC), ser. EuCNC2014, June 2014.

[12] R. Mijumbi, J.-L. Gorricho, J. Serrat, K. Xu, M. Shen, and K. Yang, “A
neuro-fuzzy approach to self-management of virtual network resources,”
Journal of Expert Systems With Applications, Feb 2015.

[13] I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm.” in ICC. IEEE, 2008, pp. 5634–5640.

[14] J. Infhr and G. R. Raidl, “Introducing the virtual network mapping
problem with delay, routing and location constraints.” in INOC, ser.
Lecture Notes in Computer Science, J. Pahl, T. Reiners, and S. Vo,
Eds., vol. 6701. Springer, 2011, pp. 105–117.

[15] G. Schaffrath, S. Schmid, and A. Feldmann, “Generalized and resource-
efficient vnet embeddings with migrations,” CoRR, vol. abs/1012.4066,
2010.

http://doi.acm.org/10.1145/1971162.1971168

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

[16] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” in Proceedings of the 1st ACM
Workshop on Virtualized Infrastructure Systems and Architectures, ser.
VISA ’09. New York, NY, USA: ACM, 2009, pp. 81–88.

[17] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun, “Survivable
virtual infrastructure mapping in a federated computing and networking
system under single regional failures.” in Global Telecommunications
Conference (GLOBECOM). IEEE, 2010, pp. 1–6.

[18] C. Wang and T. Wolf, “Virtual network mapping with traffic matrices,”
in Architectures for Networking and Communications Systems (ANCS),
2011 Seventh ACM/IEEE Symposium on, Oct 2011, pp. 225–226.

[19] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Comput. Netw., vol. 55,
no. 4, pp. 1011–1023, mar 2011.

[20] A. Jarray and A. Karmouch, “Decomposition approaches for virtual
network embedding with one-shot node and link mapping,” Networking,
IEEE/ACM Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[21] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding
problem: A column generation approach,” in INFOCOM, 2013 Proceed-
ings IEEE, April 2013, pp. 410–414.

[22] R. Xie, F. R. Yu, and H. Ji, “Dynamic resource allocation for hetero-
geneous services in cognitive radio networks with imperfect channel
sensing.” IEEE T. Vehicular Technology, vol. 61, no. 2, pp. 770–780,
2012.

[23] J. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and
H. De Meer, “Energy efficient virtual network embedding,” Commu-
nications Letters, IEEE, vol. 16, no. 5, pp. 756–759, May 2012.

[24] D. Santos, A. de Sousa, F. Alvelos, and M. Pioro, “Link load balancing
optimization of telecommunication networks: A column generation
based heuristic approach,” in Telecommunications Network Strategy
and Planning Symposium (NETWORKS), 2010 14th International, Sept
2010, pp. 1–6.

[25] R. B. M. Pfetsch and C. Liebchen, “Lecture notes on multi-commodity
flows and column generation,” February 2006.

[26] M. X. Goemans and D. P. Williamson, “Approximation algorithms for
np-hard problems,” D. S. Hochbaum, Ed. Boston, MA, USA: PWS
Publishing Co., 1997, ch. The Primal-dual Method for Approximation
Algorithms and Its Application to Network Design Problems, pp.
144–191. [Online]. Available: http://dl.acm.org/citation.cfm?id=241938.
241942

[27] S. Lahaie, “How to take the Dual of a Linear Program,” www.cs.
columbia.edu/coms6998-3/lpprimer.pdf?, 2008, Accessed: 2014-02-17.

[28] M. Güzelsoy and T. K. Ralphs, “Integer programming duality,”
in Encyclopedia of Operations Research and Management Science,
J. Cochran, Ed. Wiley, 2010. [Online]. Available: http://coral.ie.lehigh.
edu/∼ted/files/papers/Duality-EOR10.pdf

[29] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in Proceedings of the Ninth International
Symposium in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, ser. MASCOTS ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 346–353.

[30] “IBM ILOG CPLEX Optimizer,” http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/about/, Accessed: 2014-02-17.

[31] G. J. Woeginger, “Combinatorial optimization - eureka, you shrink!”
M. Jünger, G. Reinelt, and G. Rinaldi, Eds. New York, NY,
USA: Springer-Verlag New York, Inc., 2003, ch. Exact Algorithms
for NP-hard Problems: A Survey, pp. 185–207. [Online]. Available:
http://dl.acm.org/citation.cfm?id=885909.885927

[32] K. W. Ross, Multiservice Loss Models for Broadband Telecommunica-
tion Networks, P. J. Hancock, Ed. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1995.

[33] F. Samuel, M. Chowdhury, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” Journal of
Internet Services and Applications, vol. 4, no. 1, 2013. [Online].
Available: http://dx.doi.org/10.1186/1869-0238-4-6

[34] R. Mijumbi, J.-L. Gorricho, J. Serrat, J. Rubio-Loyola, and R. Aguero,
“Survivability-oriented negotiation algorithms for multi-domain virtual
networks,” in Network and Service Management (CNSM), 2014 10th
International Conference on, Nov 2014, pp. 276–279.

[35] Z. Ye, A. Patel, P. Ji, and C. Qiao, “Survivable virtual infrastructure
mapping over transport software-defined networks (t-sdn),” in Optical
Fiber Communications Conference and Exhibition (OFC), 2014, March
2014, pp. 1–3.

Rashid Mijumbi obtained a Bachelors of Science
Degree in Electrical Engineering from Makerere
University (Kampala, Uganda) in 2009, and a PhD
in Telecommunications Engineering from the Uni-
versitat Politècnica de Catalunya (UPC) (Barcelona,
Spain) in 2014. He is currently a Postdoctoral Re-
searcher in the Network Engineering Department at
UPC. His research interests are in management of
networks and services for the future Internet. Current
focus is on resource management in virtualized
networks and functions, software defined networks

and cloud computing.

Joan Serrat received a degree of telecommunication
engineering in 1977 and a PhD in the same field
in 1983, both from UPC. Currently, he is a full
professor at UPC where he has been involved in sev-
eral collaborative projects with different European
research groups, both through bilateral agreements
or through participation in European funded projects.
His topics of interest are in the field of autonomic
networking and service and network management.
He is the contact point of the TM Forum at UPC.

Juan-Luis Gorricho received a telecommunication
engineering degree in 1993, and a Ph.D. degree in
1998, both of them from the Technical University
of Catalonia (UPC). Since 1994 he joined the De-
partment of Network Engineering at the UPC as
an assistant professor, and as associate professor
since 2001. His most recent research interests have
been focused on applying artificial intelligence to the
research fields of ubiquitous computing and network
management; with special interest on using smart-
phones to achieve the recognition of user activities

and locations; and applying linear programming and reinforcement learning
to solve the network embedding problem and the resource allocation problem,
targeting the implementation of the network virtualization and the future
network function virtualization.

Raouf Boutaba received the MSc and PhD degrees
in computer science from the Université de Pierre
et Marie Curie, Paris, France, in 1990 and 1994,
respectively. He is currently a full professor of
computer science at the University of Waterloo, Wa-
terloo, ON, Canada, and a distinguished visiting pro-
fessor at the Pohang University of Science and Tech-
nology (POSTECH), Korea. His research interests
include network, resource and service management
in wired and wireless networks. He has received
several best paper awards and other recognitions

such as the Premier’s Research Excellence Award, the IEEE Hal Sobol Award
in 2007, the Fred W. Ellersick Prize in 2008, the Joe LociCero and the Dan
Stokesbury awards in 2009, and the Salah Aidarous Award in 2012. He is a
fellow of the IEEE and the Engineering Institute of Canada.

http://dl.acm.org/citation.cfm?id=241938.241942
http://dl.acm.org/citation.cfm?id=241938.241942
www.cs.columbia.edu/coms6998-3/lpprimer.pdf?
www.cs.columbia.edu/coms6998-3/lpprimer.pdf?
http://coral.ie.lehigh.edu/~ted/files/papers/Duality-EOR10.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/Duality-EOR10.pdf
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/about/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/about/
http://dl.acm.org/citation.cfm?id=885909.885927
http://dx.doi.org/10.1186/1869-0238-4-6

	Introduction
	Problem Formulation
	Substrate Network Capacity
	Virtual Network Requests
	Virtual Network Embedding

	Related Work
	Two-step Embedding
	One-shot Embedding
	Mathematical Programming
	Summary

	One-Shot Virtual Network Embedding
	Substrate Network Augmentation
	LP-P: Path based Formulation - Primal

	Path Generation
	Initial Solution
	Pricing Problem

	Performance Evaluation
	Simulation Setup
	Performance Metrics
	Solution Quality
	Solution Complexity
	Embedding Cost and Revenue

	Comparisons
	Results
	Solution Quality
	Solution Complexity
	Embedding Cost, Revenue and Profit

	Limitations

	Conclusion
	Appendix: ViNEOPT
	References
	Biographies
	Rashid Mijumbi
	Joan Serrat
	Juan-Luis Gorricho
	Raouf Boutaba

