
 

 

Machine-learning based orchestration of slices (MLO) 

 

 Scope of this document 
This document is to describe the purpose of the demonstration and the architecture of the 
test infrastructure that was used by the NECOS consortium. This test infrastructure is not 
precluding that any other can be used to run de demonstration. The guide to install the 
software in the substrate resources is provided in the README file, in the same 
repository as the software. 

 Introduction 
In this demonstration, the Tenant hosted at CPqD requests multiple slice allocations to 
the Slice Provider hosted by UFU that uses the Resources Providers hosted in the same 
institution as presented in Figure 1. 

  

Figure 1. Instantiation of MLO on the experimental infrastructure. 

 License 
All the source code developed within the NECOS project, and made available as OSS, 
is released under the Apache License – Version 2.01 

 Objectives 
The objective of this demo is to show how machine learning algorithms can be useful for 
the orchestration of slices. Two modules of NECOS Architecture, IMA and SRO, were 
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specifically extended to enable intelligent monitoring and intelligent elasticity 
orchestration, respectively.  

Given the multitude of elements composing slices’ infrastructure and the presence of 
multiple domains in which slice parts are spread to create an end-to-end slice, it is natural 
to expect considerable overhead to monitor and to move such data from the IMA towards 
the SRO. Considering such characteristics that can pose a scalability problem, this demo 
provides intelligence to IMA, enabling it to perform automatic selection of features to be 
monitored. Such selection is performed on a per-slice basis, requiring that the SRO 
provides a target KPI to IMA, so it can select a set of features that better describes the 
behavior of such KPI. We refer to the entire set of infrastructure metrics as full feature 
set, i.e., the set of metrics regarding the entire infrastructure composing the slice. We refer 
to the result of the selection mechanism based on machine learning as selected feature 
set, i.e., a set of K essential metrics selected among all infrastructure metrics composing 
the slices. 

The IMA, in this demo, performs the collection of all infrastructure metrics (full feature 
set) in longer intervals (less frequently) when compared to the frequency in which the 
selected feature set is collected. It is expected that along the lifetime of a given slice, the 
target KPI can evolve and, as a consequence, the selected feature set can probably present 
a different composition. This effect is justified, for example, by sazonalities related to the 
usage of the slice. By collecting the full feature set in less frequent intervals, the IMA is 
capable of automatically updating the selected feature set. 

IMA, after the selection of the features, provides the monitoring data to the SRO, 
according to the time interval specified by IMA. As a result, the intelligent version of the 
IMA presented in this demo reduces the volume of data being pushed towards the SRO 
(the selected feature set), not only improving monitoring scalability, but also removing 
noisy data from the monitoring information. Such noise removal has the potential to 
improve accuracy in the operations performed by the SRO during slices orchestration. 

The intelligent SRO implemented in this demo consumes the selected feature set provided 
by the intelligent IMA with the goal of supporting elasticity decisions. To do it, the 
intelligent SRO performs four steps: 1) KPI Estimation; 2) SLA Prediction; 3) Slice 
Resources Optimization; and 4) Enforcement of Slice Modifications. 

The SLA for a given slice, in this demo, is associated to a KPI. Such KPI can be related 
to the slice infrastructure, considering metrics related to, for example, CPU, memory, 
network traffic, and others. The most interesting aspect of this demo is that, differently 
from the other SRO implementation, such KPI does not have to be generic and can also 
be directly related to a Service KPI. As such in the demo, we actually used Read and 
Write Response Times of a Cassandra-DHT running as the Service deployed in a given 
slice. The SRO estimates the current state of such Service KPIs as a way of verifying 
whether the slice SLA is being violated or not. An example SLA that might be adopted 
during the demo is to target Read Response Times below 50 milliseconds for verifying 
the Slice SLA conformance. Besides continuous values, the same solution presented in 
this demo can be applied for services with discrete classes, like videos in high or low 
resolution. 



The first step taken by the SRO, named as KPI Estimation, consumes the monitoring data 
provided by the intelligent IMA, feeding it into a supervised machine learning model 
(regressor/classifier), which is trained to estimate the current state of the target Service 
KPI. Basically, it is done in order to associate the slice’s infrastructure measurements 
fluctuations with the chosen Service KPI. 

By having the history of estimations, the intelligent SRO is capable of performing the 
second step, named SLA Prediction, which foresees what the state of the SLA will be at 
a given point in the future. This enables the SRO to proactively tune the slice, preparing 
it for the condition seen in the future. 

The third step, perhaps the most complex out of the four steps listed, has the duty of 
designing the new slice infrastructure arrangement, capable of handling the condition 
foreseen by the second step taken by our intelligent SRO. This third step, by itself, opens 
several research possibilities, including root cause analysis, resource optimization, and 
others of even higher complexity. 

In this demo, we consider the existence of a set of slice flavours. A tenant, when 
requesting a slice to NECOS – similarly to what is done nowadays when requesting a 
virtual machine at Amazon – informs the flavour which will be applied to its own slice 
and, additionally, a set of flavours allowed to accommodate possible SLA fluctuations. 
The demo detects in step number two whether the SLA is going to be violated or if it is 
going to be under conformance with a lighter KPI condition, and step number three 
optimizes the slice flavour, among a set of flavours, which is capable of keeping the SLA 
under conformance and, at the same time, with moderate resources consumption, i.e., the 
service will not face SLA violation due to lack of resources, but it will not be running 
with a set of resources that is not really necessary, given the current service condition 
estimated by the SRO, as well. 

The fourth step does not restrict itself to adjustments in terms of slice infrastructure, 
already specified in NECOS Architecture, it also encompasses intelligent adaptations. 
Besides the communication among SRO and DC/WAN Slice Controllers, the intelligent 
SRO: 1) requests to IMA the update in the composition of the feature set being monitored, 
ideal to the new slice flavour; 2) updates the trained model being used in step number 
one, which estimates the Service KPI; and 3) updates the predictive models used in step 
number two. In short, step number four performs an overall, infrastructure and 
intelligence, adjustment in this demo. 

 Workflow 
The demo departs from an established end-to-end slice with a certain service running 
inside it. As a first step in the demo, the SRO provides IMA with the KPI that it wants to 
be estimated. As mentioned before, the demo showcases a Cassandra-DHT type of 
service. It also has a second application, which is a Video-on-demand Service based on 
Dash Price Chart (DASH). 

As seen in Figure 2, upon receiving the KPI from SRO (step 1), the intelligent IMA 
recovers (step 2) from the infrastructure providers the full feature set (i.e., the 
measurements related to the infrastructure) already monitored by the VIM/WIM. Figure 
28 suggests the usage of local databases at infrastructure providers to store monitoring 



data, but depending on the monitoring technology within infrastructure providers, IMA 
might assume the responsibility of storing it.  

After step 3, with all monitoring data at hand (full feature set), the IMA performs feature 
selection using machine learning. It selects the features to monitor using the Service KPI 
as target metric, i.e., it defines the composition of the selected feature set with K essential 
metrics that better represent the given Service KPI and executes some tasks in parallel as 
a consequence of step 4. The set of K features and the respective monitoring history is 
returned to SRO (step 5), so it can train its KPI Estimation module, at the same time that 
IMA adjusts the monitoring tools deployed within infrastructure providers. As mentioned 
before, the intelligent IMA deploys two monitoring instances, one responsible for 
collecting the full feature set (step 6) at longer time intervals (mainly used to support 
feature selection) and a second instance responsible for delivering live monitoring data 
corresponding to the selected feature set (step 7). The definition of both collecting 
intervals can be explicitly specified by the tenant or by analysing learning curves. 

Figure 2also suggests a direct communication from VIM/WIM Monitoring module 
towards the SRO to deliver live monitoring data (step 8). This demo implementation 
uses a Pub/Sub system, based on Apache Kafka, which removes several push cycles 
from the overall monitoring system. Basically, we assume that required adaptations in 
the monitored data is performed locally at the infrastructure providers, for example, by 
deploying the functionalities of IMA in a distributed manner among the slice parts 
composing slices. Such design contributes to the deployment of real time orchestration 
of slices. 

 

Figure 2. Intelligent IMA workflow for feature selection. 

Figure 3 updates the elasticity workflow presented in Deliverable D5.1 of NECOS, 
presenting the machine learning extensions as green steps. This figure depicts the four 
steps SRO performs in this demo to support elasticity. This figure also accommodates the 
proposed communication directly from the VIM/WIM monitoring systems towards the 
KPI Estimation module of the SRO, as mentioned above. 



 

Figure 3. Intelligent SRO workflow for elasticity. 

● It is important to highlight the possible outcomes of step 3, the decision can 
indicate the need for vertical and/or horizontal elasticity, both including upgrade 
and/or downgrade of infrastructure resources. But, another important outcome of 
step 3, is to keep the slice in its current form, i.e., returning the loop to KPI 
Estimation (step 1) of the intelligent SRO. This latter case represents the scenario 
in which the optimization of slice flavours indicates that current slice arrangement 
is the best among the available options, for example. 
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