

D4.1: Provisional API and
Information Model Specification

Deliverable

Abstract

This deliverable presents an initial version of the NECOS information model through

presenting its overall, the infrastructure description and the slice specification viewpoints, the

supported client-to-cloud and cloud-to-cloud APIs, as well as the workflow for resource

discovery during slice provisioning. The deliverable further provides a state-of-the-art analysis

of relevant information models and cloud APIs.

Document ID NECOS-D4.1

Status Final

Version 1.0

Editor Panagiotis Papadimitriou (UOM)

Due 31/08/2018

Submitted 02/10/2018

D4.1: Provisional API and Information Model Specification

NECOS project

2
EUB-01-2017

TABLE OF CONTENTS

ACRONYMS .. 6

EXECUTIVE SUMMARY .. 8

1 INTRODUCTION... 9

1.1 DELIVERABLE STRUCTURE .. 9

1.2 CONTRIBUTION OF THIS DELIVERABLE TO THE PROJECT AND RELATION WITH OTHER DELIVERABLES 10

2 STATE-OF-THE-ART ANALYSIS .. 11

2.1 CLOUD APIS .. 11

2.1.1 5G-PPP ... 11

2.1.2 5GEx ... 13

2.1.3 ITU-T .. 17

2.1.4 Open Grid Forum ... 20

2.1.5 Initiatives in Other Standards Development Organizations .. 22

2.2 INFORMATION MODELS ... 23

2.2.1 NOVI... 23

2.2.2 ETSI NFV MANO ... 26

2.2.3 4WARD .. 28

2.2.4 COMS ... 30

2.3 SUMMARY .. 31

3 NECOS INFORMATION MODEL... 32

3.1 INFORMATION MODEL OVERVIEW ... 32

3.2 NETWORK SLICE SPECIFICATION .. 33

3.3 INFRASTRUCTURE DESCRIPTION .. 36

3.4 YAML DESCRIPTION EXAMPLE ... 40

4 SLICE DISCOVERY FRAMEWORK ... 44

4.1 PARTIALLY DEFINED TEMPLATE ... 45

4.2 QUERIES ADDRESSED TO RESOURCE PROVIDERS .. 48

4.3 SRA MESSAGE .. 51

5 NECOS CLOUD API SPECIFICATIONS ... 52

5.1 CLIENT-TO-CLOUD API ... 52

5.1.1 Slice (and Service) Management ... 52

5.1.2 Slice Configuration ... 55

5.2 CLOUD-TO-CLOUD APIS .. 56

5.2.1 Slice Request Interface... 57

5.2.2 Slice Instantiation Interface ... 58

5.2.3 Slice Marketplace Interface ... 58

D4.1: Provisional API and Information Model Specification

NECOS project

3
EUB-01-2017

5.2.4 Slice Runtime Interface .. 59

6 CONCLUSIONS... 61

7 REFERENCES .. 62

D4.1: Provisional API and Information Model Specification

NECOS project

4
EUB-01-2017

LIST OF FIGURES

Figure 1. 5G overall architecture ... 11

Figure 2. Network service representation ... 12

Figure 3. 5G-PPP APIs. ... 13

Figure 4. 5GEx architecture reference framework .. 14

Figure 5. Conceptual architecture of network virtualization .. 17

Figure 6. Concept of LINP provided by network virtualization .. 18

Figure 7. Network slice lifecycle management and orchestration functional components 19

Figure 8. Network slice instance management functional architecture ... 19

Figure 9. OCCI Interface (Source: OCCI, http://occi-wg.org/about). ... 21

Figure 10. Openstack OCCI interface implementation .. 22

Figure 11. NOVI ontology for modelling resources and services. .. 23

Figure 12. Network connectivity properties defined in the NOVI resource ontology .. 24

Figure 13. NOVI’s modular ontology for modelling monitoring data and tasks ... 25

Figure 14. NOVI policy ontology types. ... 25

Figure 15. NFV MANO reference architecture .. 26

Figure 16. MANO information model. ... 27

Figure 17. The 4WARD approach to network virtualization ... 29

Figure 18. UML diagram of 4WARD information model ... 29

Figure 19. COMS tree of attributes for a slice ... 31

Figure 20. Overview of the NECOS information model. .. 33

Figure 21. Slice specification with the NECOS information model. ... 34

Figure 22. Infrastructure description with the NECOS information model.. 39

Figure 23. YAML top-level descriptions. .. 40

Figure 24. YAML specification of a service function. ... 41

Figure 25. EPA attributes specification. .. 42

Figure 26. Service function interface description. ... 42

Figure 27. Service link description. .. 43

Figure 28. Overview of the resource discovery workflow. .. 44

Figure 29. Slice topology description in YAML. ... 45

Figure 30. Slice part description in YAML .. 46

Figure 31. Net slice part description in YAML. .. 47

Figure 32. Broker to DC Slice agent query message. ... 48

Figure 33. VDU specification in YAML. .. 50

Figure 34. Link specification in YAML. ... 51

Figure 35. NECOS Client-to-Cloud Interface / API ... 52

Figure 36. NECOS Cloud-to-Cloud API. .. 57

D4.1: Provisional API and Information Model Specification

NECOS project

5
EUB-01-2017

CONTRIBUTORS

Contributor Institution

Panagiotis Papadimitriou University of Macedonia (UOM)

Lefteris Mamatas University of acedonia (UOM)

Ilias Sakellariou University of Macedonia (UOM)

Sofia Petridou University of Macedonia (UOM)

Chronis Valsamas University of Macedonia (UOM)

Sotiris Skaperas University of Macedonia (UOM)

Antonis Tsioukas University of Macedonia (UOM)

Rafael Pasquini Federal University of Uberlândia (UFU)

Raquel Fialho Lafetá Federal University of Uberlândia (UFU)

Fábio Luciano Verdi Federal University of São Carlos (UFSCAR)

Paulo Ditarso Federal University of São Carlos (UFSCAR)

André Beltrami Federal University of São Carlos (UFSCAR)

Javier Baliosian Universitat Politècnica de Catalunya (UPC)

Fernando Farias Federal University of Pará (UFPA)

Billy Pinheiro Federal University of Pará (UFPA)

Antonio Abelem Federal University of Pará (UFPA)

Christian Rothenberg University of Campinas (UNICAMP)

David Moura University of Campinas (UNICAMP)

Marcos Salvador University of Campinas (UNICAMP)

Fransesco Tusa University College London (UCL)

Stuart Clayman University College London (UCL)

Sand Correa Federal University of Goias (UFG)

Leandro Freitas Federal University of Goias (UFG)

Luis M. Contreras Telefónica Investigación y Desarrollo (TID)

Reviewers

Reviewer Institution

Fábio Luciano Verdi Federal University of São Carlos (UFSCAR)

Luis M. Contreras Telefónica Investigación y Desarrollo (TID)

Rafael Pasquini Federal University of Uberlândia (UFU)

D4.1: Provisional API and Information Model Specification

NECOS project

6
EUB-01-2017

Acronyms

AP Access Point PNF Physical Network Function

API Application Programming

Interface

PNM Physical Network Manager

B2B Business-to-Business RAN Radio Access Network

C2B Customer-to-Business RC Resource Control

COMS Common Operation and

Management of network Slicing

RDF Resource Defined Template

ECA Event-Condition-Action REST Representational State Transfer

EPA Extended Platform Awareness RT Resource Topology

ETSI European Telecommunications

Standards Institute

SCM Slice Charging Management

FIB Forwarding Information Base SCPO Slice Capacity Planning and

Optimization

GPS Global Positioning System SDO Service Data Object

IaaS Infrastructure as a Service SFM Slice Fault Management

IM Information Model SLA Service Level Agreement

IMT International Mobile

Telecommunications

SLMCCS Slice Lifecycle Customer Care

Support

ISG Industry Specification Group SLO Service Level Objective

ITU International

Telecommunications Union

SP Slice Provisioning

KPIs Key Performance Indicators SRA Slice Resource Alternatives

LINP Logical Isolated Network

Partitions

SRMA Slice Resource Monitoring and

Analytics

LSCD Lightweight Slice Defined

Cloud

SSH Secure Shell

MANO Management and Orchestration SSM Slice Security Management

MdO Multi-domain Orchestrator SRR Slice Resource Repository

ML Machine Learning UML Unified Modeling Language

MPLS Multiprotocol Label Switching VDU Virtual Deployment Unit

NFVO Network Function Virtualization

Orchestrator

VIM Virtualized Infrastructure Manager

D4.1: Provisional API and Information Model Specification

NECOS project

7
EUB-01-2017

NFV-O NFV Orchestrator VL Virtual Link

NML Normalized Maximum

Likelihood

VNC Virtual Network Computing

NOVI Networking Innovations Over

Virtualized Infrastructures

VNF Virtual Network Function

NS Network Service VNFCs VNF Components

NSD Network Service Descriptor VNFFG VNF Forwarding Graph

OAM Operations and Management VNP Virtual Network Provider

OCCI Open Cloud Computing

Interface

VRM Virtual Resources Manager

OGF Open Grid Forum WIM WAN Infrastructure Manager

OSM Open Source MANO XML Extensible Markup Language

OWL Web Ontology Language YAML YALM Ain’t Markup Language

PDT Partially Defined Template YANG Yet Another Next Generation

D4.1: Provisional API and Information Model Specification

NECOS project

8
EUB-01-2017

Executive Summary

The NECOS project aims at the design and implementation of a system architecture for cloud slicing

across multiple administrative domains. One of the novel aspects of the project is the on-demand

instantiation of a Virtual Infrastructure Manager (VIM) per slice, which effectively enables the tenant

to exercise fine-grained control and management of his slice.

This deliverable is focused on slice specification and provisioning. As such, the deliverable initially

presents two information models specified by the project for the infrastructure description and the slice

specification, respectively. Furthermore, D4.1 provides a detailed description of a wide range of API

methods for (i) slice request, management, and configuration by the client, and (ii) slice request,

instantiation, and run-time management by the NECOS orchestrator. In addition, the deliverable

describes the methods supported by NECOS for the discovery of resources during slice provisioning.

The information models, cloud APIs and resource discovery methods will be further developed and

refined, as the project progresses and the NECOS system is built. Their final version will appear in the

next version of this deliverable, i.e., D4.2.

D4.1: Provisional API and Information Model Specification

NECOS project

9
EUB-01-2017

1 Introduction

The NECOS project addresses the challenging problem of network slicing across multiple cloud

environments, such as cloud datacenters and edge clouds. In this respect, NECOS aims at building a

platform for the provisioning, management, and resource orchestration of network slices, enabling a

new cloud computing model, namely Slice as a Service. One of the novel aspects of the project is the

on-demand instantiation of a Virtual Infrastructure Manager (VIM) per slice, which effectively enables

the tenant 1to exercise fine-grained control on his slice, eliminating unnecessary provider interventions

during the slice lifetime. NECOS supports various slicing operational model, with the current project

focus being on VIM-independent slicing (termed as Mode 0) and VIM-dependent slicing (termed as

Mode 1). In particular, Mode 0 grants the tenant with direct access to a dedicated VIM, whereas Mode

1 provides a shared VIM among multiple tenants.

This deliverable is focused on information models and Application Programming Interface (API)

specifications for slice request, provisioning, and run-time management. Slice creation raises the need

for means to describe slice requests as well as physical resources. This inherent need is satisfied through

an information model that provides resource descriptions at different levels of abstraction, meeting the

requirements of slice specifications and infrastructure description. This provisional information model

has been developed after a careful inspection of related information models, such as COMS (Common

Operations and Management on network Slices) and ETSI NFV MANO. The deliverable provides an

initial description of the NECOS information model, which will be further refined, based on inputs from

the NECOS system implementation.

The deliverable further reports on a set of cloud APIs to enable slice request, creation, configuration,

and run-time management. The respective cloud APIs have been subdivided into two classes: (i) client-

to-cloud APIs, which include API methods invoked by the tenant for slice request as well as slice

management and control upon the slice creation, and (ii) cloud-to-cloud APIs, which are associated with

interactions between NECOS system components residing in different domains (e.g., in the case of cloud

federation), such as the Slice Resource Orchestrator, the Slice Builder, Slice Broker, the Slice Agents,

and the Slice Controllers. More specifically, the set of Cloud-to-Cloud APIs comprises the following

APIs: (i) Slice Request Interface, (ii) Slice Instantiation Interface, (iii) Slice Marketplace Interface, and

(ii) Slice Runtime Interface. Similar to the information model, all cloud API specifications are

preliminary and are expected to undergo potential modifications and/or extensions, as the NECOS slice

orchestration platform is being built and results are collected from the feasibility and performance tests.

In addition, the deliverable presents the main workflow for resource discovery towards slice creation.

The resource discovery methods rely on the information model and the cloud APIs specified by NECOS

and essentially constitute workflows for information exchange, including slice requests, resource

requests, and resource offerings. The discovery methods involve various NECOS components, such as

the Slice Builder, the Slice Broker, and the Slice Agents.

1.1 Deliverable Structure

The deliverable structure provides a clear separation between the three main outputs of NECOS WP4

(i.e., information model, cloud APIs, resource discovery methods) and the state-of-the-art (SOTA),

helping the reader to grasp the project contributions and further understand how the project goes beyond

the SOTA in the area of cloud slicing.

In further detail, the deliverable is structured as follows. Section 2 provides a SOTA analysis of relevant

cloud APIs and information models. After the analysis, the deliverable identifies the gaps and extracts

the useful features of these APIs and information models for network slicing. Section 3 provides a

detailed documentation of the information model for the slice specification and the infrastructure

1 The terms tenant and client are used interchangeably, representing the cloud service consumer (i.e.,

Slice-as-a-Service consumer, in the context of NECOS).

D4.1: Provisional API and Information Model Specification

NECOS project

10
EUB-01-2017

description. Initially, there is a high-level representation of the whole model, followed by more detailed

descriptions of (i) the slice, as specified, requested and viewed by the Tenant, and (ii) the physical

infrastructure, which includes very detailed specifications of the main infrastructure components for

resource availability, allocation and monitoring by the infrastructure provider. Section 4 elaborates on

the resource discovery framework and the supported methods for resource discovery during slice

creation. Section 5 documents the two classes of cloud APIs (namely client-to-cloud and cloud-to-cloud),

providing a description of all supported API methods. Each API class is presented in a separate

subsection. Finally, Section 6 provides a summary of the project contributions with respect to slice

specification and provisioning, as well as an outline of the next steps for the information model and the

cloud APIs, whose final version will be documented in D4.2.

1.2 Contribution of this Deliverable to the project and relation with other
Deliverables

This deliverable documents the outputs of WP4 and, more specifically, an information model for slice

specification and infrastructure description, and a set of API methods for slice request, creation,

configuration and run-time management. These contributions complement the NECOS slicing

architecture, which is presented in D3.1. In particular, D4.1 provides the necessary means for slice

specification and provisioning, based on the architecture that appears in D3.1. This deliverable will

further provide inputs to D5.1 and D6.1, and more specifically, to the feasibility and performance tests

that will be conducted based on the NECOS proof-of-concept system implementation. The inputs to

D5.1 and D6.1 comprise the information model, the cloud APIs and the resource discovery framework,

which will be developed and integrated into the NECOS system for slice provisioning. Finally, D4.2

will be based on this version, documenting the final version of the information model and the cloud

APIs, as these will evolve during the course of the project.

D4.1: Provisional API and Information Model Specification

NECOS project

11
EUB-01-2017

2 State-of-the-Art Analysis

This section provides an analysis of SOTA in terms of cloud APIs and information models for network

resource descriptions. Our main goal is to present a comprehensive description of the most relevant

efforts in research projects and other initiatives, as well as identify gaps in terms of network slicing and

extract useful features from existing APIs and models, which can be fed into the respective specifications

of NECOS. In this respect, Section 2.1 discusses relevant cloud APIs, whereas Section 2.2 describes

relevant information models. Section 2.3 summarizes the SOTA analysis and identifies the suitability

of existing APIs and information models.

2.1 Cloud APIs

2.1.1 5G-PPP

The 5G-PPP white paper, entitled “View on 5G Architecture”, proposes the 5G architecture illustrated

in Figure 1, as a result of the composition of various individual 5G-PPP initiatives and research projects.

On this basis, the following functionalities of the architecture are analyzed: network slicing,

programmability and softwarization, management and orchestration, 5G security, and RAN architecture.

Figure 1. 5G overall architecture

(Source: 5G-PPP, View on 5G Architecture v2.0).

For the overall architecture, a recursive structure is proposed, defined as “the ability to build a service

out of existing services”. In a network slicing point of view, this capability allows a slice instance

operating on top of the infrastructure resources provided by the slice instance below. The tenant can

operate its virtual infrastructure as it operates the physical one, allocating and reselling part of the

resources to other tenants in a recursive manner. As such, each tenant can own and deploy its own

MANO system. To provide support for this key functionality, a set of homogeneous APIs are needed to

provide a layer of abstraction for the management of each slice and controlling the underlying virtual

resources.

The structure of APIs are not on the main objectives of the white paper. However, in a conceptual

framework, APIs functionalities are considered in architectures related to the NECOS project and more

specifically, network slicing, and management and orchestration architectures.

D4.1: Provisional API and Information Model Specification

NECOS project

12
EUB-01-2017

In terms of network slicing, 5G-PPP proposes a set of APIs for the interaction between Network Services

(NS) and the corresponding VNFs that encompass the following attributes: network-slice ID, nodes,

links, connections points, storage resources, compute resources, topologies, network services, service

specific managers, network functions, virtual network functions, network function specific managers

and predefined function blocks. Moreover, these information elements are currently under

standardization in the ETSI NFV ISG, in OASIS TOSCA standards and in IETF. As network slicing

services can be grouped to two different levels, i.e., (i) the provisioning of Virtual Infrastructures (VI)

and (ii) the provisioning of tenants owned NS, 5G-PPP also provides a general categorization of APIs

needed to enable both services providing to different degree of control of network slices, defined as

follows:

• Network Service Allocation / Modification / De-allocation API,

• Virtual Infrastructure Allocation /Modification / De-allocation API,

• Virtual infrastructure control API with limited control, and,

• Virtual infrastructure control API with full control.

Figure 2. Network service representation

(Source: 5G-PPP, View on 5G Architecture v2.0).

A set of APIs is also required for the multi-domain orchestration, which includes the automated

management of services and resources in multi-technology environments (multiple domains involving

different cloud and networking technologies) and multi-operator environments (multiple administrative

domains). This challenging plane, consisting of various concepts as depicted in Figure 2, has to be

supported by several APIs.

D4.1: Provisional API and Information Model Specification

NECOS project

13
EUB-01-2017

Figure 3. 5G-PPP APIs.

At the lower plane of Figure 3, there are resource domains, exposing resource abstraction on interface

I5. Domain orchestrators perform resource orchestration and/or service orchestration exploiting the

abstractions exposed on I5 by resource domains.

At Multi-domain orchestrator (MdO) plane, the resource MdO belonging to an infrastructure operator,

for instance operator A, interacts with domain orchestrators, via interface I3 APIs, to orchestrate

resources within the same administrative domains. The MdO interacts with other MdOs via interface

I2-R APIs (business-to-business or “B2B”) to request and orchestrate resources across administrative

domains. Resources are exposed at the service orchestration level on interface Sl-Or to Service MdOs.

Interface I2-S (B2B) is used by Service MdOs to orchestrate services across administrative domains.

Finally, the Service MdOs expose, on interface I1, service specification APIs (Customer-to-Business or

“C2B”) that allow business customers to specify their requirements for a service. The framework also

considers MdO service providers, such as Operator D in

Figure 3, which do not own resource domains but operate a multi-domain orchestrator to trade resources

and services.

To sum up, 5G architecture enables new business opportunities meeting the requirements of a wide

range of use cases, as well as enables 5G to be future proof by means of: (i) implementing network

slicing in a cost-effective way, (ii) addressing both end-user and operational services, (iii) supporting

softwarization natively, (iv) integrating communication and computation, and (v) integrating

heterogeneous technologies (including fixed and wireless technologies).

2.1.2 5GEx

The 5GEx architecture framework, shown in Figure 4, identifies the main functional components and

the interworking interfaces involved in multi-domain orchestration.

D4.1: Provisional API and Information Model Specification

NECOS project

14
EUB-01-2017

Figure 4. 5GEx architecture reference framework

(Source: 5GEx Deliverable D2.2).

The bottom part of Figure 4 shows different Resource Domains, hosting the actual resources. The middle

part shows the Domain Orchestrators that are responsible of performing Virtualization Service

Orchestration and/or Resource Orchestration exploiting the abstractions exposed by the lower Resource

Domains. The key 5GEx component – the Multi-provider Multi-domain Orchestrator (MdO) – is shown

at the top of Figure 4. The MdO handles the orchestration of resources and services from different

providers, coordinating resource and/or service orchestration at multi-domain level, where multi-domain

may refer to multi-technology (orchestrating resources and/or services using multiple Domain

Orchestrators) or multi-provider (orchestrating resources and/or services using Domain Orchestrators

belonging to multiple administrative domains).

There are three main interworking interfaces identified in the 5GEx architecture framework, briefly

described next. The MdO exposes service specification APIs (Business-to-Customer, B2C) that allow

business customers to specify their requirements for a service on Interface 1. The MdO interacts with

other MdOs via Interface 2 APIs (Business-to-Business, B2B) to request and orchestrate resources and

services across administrative domains. Finally, the MdO interacts with Domain Orchestrators via

Interface 3 APIs to orchestrate resources and services within the same administrative domains.

In 5GEx, the provisioning of multi-domain services involves a series of actions between SPs consisting

of 4 steps: (i) the discovery phase, for the distribution and population of the own capabilities, as well as

the formation of the entire view of the multi-domain ecosystem by each of the service providers

participating on it in the form of service offerings, (ii) the request phase, where the external customers

solicit the provision of services, (iii) the fulfilment phase, where the lifecycle management of the

required network functions is handled, and the necessary resources are configured and control, and (iv)

the assurance phase, where the service environment is monitored and, as consequence of that, more

control and management functions for lifecycle of the VNFs and configuration of resources could be

performed for ensuring service levels.

The different actions identified above led to the need of a further splitting of the functionalities that the

generic interfaces 1, 2 and 3 should support according to the following list:

• Service management (Ix-S)

• Catalogues (Ix-C)

• VNF lifecycle management (Ix-F)

• Resource / Topology (Ix-RT)

D4.1: Provisional API and Information Model Specification

NECOS project

15
EUB-01-2017

• Resource / Control (Ix-RC)

• Monitoring (Ix-Mon)

• SLA (Ix-SLA)

The x-S interface is used in the 5GEx architecture for requesting services. Those services can be

requested by external customers, making use of 1-S interface, or can be requested between MdOs of

different administrative domains, making then use of 2-S one.

In principle, no differences are foreseen between I1-S and I2-S variants, then the subsequent analysis is

generalized and applied to both cases. To some extent, the capabilities of the Ix-S interface are similar

to the ones required by the Ix-C, described next. While the Ix-C interface is mainly devoted for the

sharing of information, the Ix-S interface is used for invoking the services as described through such

information sharing process. From that point of view, it was sensible using the same implementation for

both interfaces. That is is based on a YANG information model supported by ETSI.

Catalogues

Ix-C covers: (i) I1-C, which is the interface that allows the interaction with the local catalogue subsystem

by the provider of the local domain and by the 5GEx customer, and (ii) I2-C, which is the east/west

interface that interconnect catalogue subsystems in two different administrative domains in order to

exchange the necessary information to build multi-domain services.

I2-C interface is defined as the interface between two different MdOs through which all the information

related to their catalogues (containing Network Services and Network Functions - VNFs) is exchanged,

connecting the local Catalogue Management module to its homonym in the neighbour domain.

VNF lifecycle management

The I2-F interface is used to communicate lifecycle management dependencies and workflows of

Network Service parts or compound VNFs.

There are several inter provider network scenarios that involve communication between NFVOs that

belong to different administrations. The I2-F interface is used to delegate NS and VNF lifecycle

management for some selected components of the Network Service to another provider. Delegation of

lifecycle management occurs in general during on-boarding of an NSD or a VNFD. This operation,

however, may also take place dynamically as part of a specific NS/VNF instantiation.

Resource / Topology

The I2-RT (Resource Topology) interface is used by a MdO to exchange the network topology and

resource information with other MdOs. The information collected through I2-RT enables a MdO to: (i)

detect the existence of other domains, (ii) learn about the network connectivity between domains, (iii)

acquire details about the resources and service capabilities of specific domains, (iv) obtain adequate

details about specific domains needed for the placement of VNF in the global infrastructure, (v) set up

connectivity between domains, if required, through I2-RC, (vi) orchestrate connectivity between VNFs

of different domains through I2-RC.

Resource Control

The Ix-RC interface is used by the MdO to reserve, provision, configure and manage resources through

other MdO’s. Two kinds of resources were mainly identified: IT resources and Network resources.

For IT domains, the resources are related to:

• vCPU and memory for the compute node, which are often bundle (e.g. small, medium, big in

OpenStack),

• storage space and type of storage,

• IT connectivity between VMs, including remote access outside the IT domain.

D4.1: Provisional API and Information Model Specification

NECOS project

16
EUB-01-2017

For network domains related resource include:

• Bandwidth, loss, jitter, delay to characterize the QoS,

• End-points to determine the tail and head of the connectivity,

• Encapsulation of the packets to describe how the connectivity is rendered.

Monitoring

The realisation of the network service assurance in the context of 5GEx requires the design and

implementation of proper mechanisms that allow performing on-demand monitoring of the services

instantiated and orchestrated in the considered multi-domain, multi-provider scenario.

A first dimension to be considered for this process referred to the Service Level Agreement (SLA)

coming with each submitted service request, which may include different conditions to be verified by

checking specific values (e.g., metrics, statistics, etc.) that are relevant for each Service Level Objective

(SLO). A second dimension to be considered referred to the particular resources implementing a certain

service instance, which are selected at the time of service deployment according to the outcome of the

resource orchestration algorithms. The latter may also require the collection of measurements to be used

as feedback to the service and resource orchestration processes, thus introducing a third dimension of

complexity.

During the analysis it became evident the need for having a separation of concerns on the monitoring

functionalities. The Monitoring interfaces were indeed decomposed into two separate sub-interfaces

named Ix-Mon control and Ix-Mon data, being applied to both I3 and I2 interfaces.

I3-Mon control is the interface which is expected to provide functionalities for both managing probes

lifecycle and requesting the collection/storage of measurements coming from resources related to the

local running service instances. The purpose of I3-Mon control would then consist in defining a common

way of remotely and dynamically controlling and orchestrating the configuration/activation of

monitoring probes to collect and storing measurements from all the different resource domains that are

involved in the realization of a given service instance.

The final goal of the probes’ activation process consists in enabling the collection of relevant

measurements to be used by the MdO management functions for the purpose of service assurance,

orchestration of services and resources, etc.

This requirement implies that different measurements, coming from different resource domains but

related to the same service instance, will somehow have to logically be linked and then conveyed to a

common storage repository in the multi-domain orchestrator.

For the definition of this interface the focus was not on considering the particular mechanisms to be

used while interacting with the repository for either writing measurement data (southbound part) or

querying them (northbound part) as they may vary with the particular storage technology. In the case of

I3-Mon data it was more sensible defining a common, agreed data model to be used when measurements

are stored and retrieved.

I3-Mon data in fact required the definition of an abstraction between different resource domains acting

as producers of monitoring data, and some MdO management functions taking the role of consumers of

monitoring data.

SLA

I3-SLA covers: (i) the flow of monitoring information from the monitoring DB to the SLA manager for

its evaluation, and (ii) the events communication between the SLA Manager and the Orchestrator.

I3-SLA interface is an internal domain interface between the local SLA Manager and the local

monitoring DB, through which the SLA manager retrieves the monitoring information for the KPIs

involved in the SLA contracts for the business transactions.

Every running instance has an associated set of KPIs that needs to be evaluated according to the terms

of the SLA. Periodically, the SLA manager will contact the monitoring DB looking for monitoring

D4.1: Provisional API and Information Model Specification

NECOS project

17
EUB-01-2017

information for each of the KPIs. This process is split in two steps: the SLA Evaluator will contact the

SLA Aggregator which then will process the request. If it is a simple KPI evaluation, the petition will

be forwarded to the monitoring DB and the information will be sent back to the SLA Evaluator. If we

are dealing with a complex KPI, the SLA Aggregator will create as many requests as needed to the

monitoring DB to retrieve all the individual samples for each of the simple KPIs that compose the

complex one. After that, the information will be aggregated and sent for evaluation [5GEX].

2.1.3 ITU-T

As well as several SDO, the International Telecommunications Union (ITU) has tried to establish a

common ground for all future mobile-broadband communications ecosystem actors, coining the term

IMT-2020 (International Mobile Telecommunication system - 2020) to embrace all the efforts to provide

an international specification for 5G.

The concept of network slicing stands among the novel concepts therein, as a strategy to build efficient

and cost-effective infrastructures that can be shared by several services. According to [GALIS2017], a

network slice is “a managed group of subsets of resources, network functions / network virtual functions

at the data, control, management/orchestration, and service planes at any given time. The behaviour of

the network slice is realized via network slice instances (i.e., activated network slices, dynamically and

non-disruptively re-provisioned). A network slice is programmable and has the ability to expose its

capabilities”.

For ITU-T, network slicing is perceived as Logical Isolated Network Partitions (LINP). According to

Recommendation ITU-T Y.3011, a LINP is composed of multiple virtual resources, whose capability

may be not bound to the capability of the physical or logical resource, which are isolated and equipped

with a programmable control and data plane.

Figure 5. Conceptual architecture of network virtualization

(Source: Recommendation ITU-T Y.3011 - 01/2012).

D4.1: Provisional API and Information Model Specification

NECOS project

18
EUB-01-2017

Thus, network virtualization is seen as a method that allows multiple LINPs to coexist in a single

physical network. Figure 5 presents the conceptual architecture of network virtualization. It can be seen

that a single physical resource can be shared among multiple virtual resources and each LINP consists

of multiple virtual resources. Each LINP is managed by an individual LINP manager. Moreover, the

physical resources in a physical network(s) are virtualized and may form a virtual-resource pool, which

is managed by the virtual resources manager (VRM). The VRM interacts with the physical network

manager (PNM) and performs control and management of virtual resources.

Figure 6 depicts the LINP concept and coexistence among a multitude of LINPs, comprising several

resources, physical or virtual, to support network virtualization. As presented in Recommendation ITU-

T Y.3011 – 01/2012, there shall have a strict relationship between a LINP and user requirements. Such

requirements provide a basis for VRMs to coordinate the allocation of appropriate LINPs to a given

user/set of users, based on VRM administration policy. Moreover, each LINP is controlled and managed

by an LINP manager. The VRM which is controlling all virtual resources creates an LINP manager and

allocates appropriate authorities to control each LINP.

Figure 6. Concept of LINP provided by network virtualization

(Source: Recommendation ITU-T Y.3011 – 01/2012).

A LINP generated by network virtualization has various characteristics, such as partitioning, isolation,

abstraction, flexibility or elasticity, programmability, authentication, authorization, and accounting.

However, to achieve such a set of goals, ITU has identified several missing points, based on a gap

analysis cited in [ITU-T Y.3011]:

• Lack of an unified network management structure;

• Non-standardized Operations and management (OAM) protocols;

• Non-existing strategies to manage and orchestrate the softwarized network components, as well

as to softwarize network management and orchestration functionality; and

• Lack of a “network slice-driven” lifecycle management and orchestration.

D4.1: Provisional API and Information Model Specification

NECOS project

19
EUB-01-2017

Figure 7. Network slice lifecycle management and orchestration functional components

(Source: Recommendation ITU-T Y.3011).

Moreover, it is considered that the management and orchestration architecture in IMT-2020 is also

required to deal with two levels: network slice life-cycle management, as well as in each network slice

instances – Instances 1 and 2, respectively. Given this architectural approach, Recommendation ITU-T

Y.3011 specifies a network management and orchestration framework for IMT-2020 in order to

accomplish the goals set above.

According to this ITU recommendation, network slice orchestration functionalities are specified in the

functional elements: slice capacity planning and optimization, slice provisioning (SP), and inter-slice

orchestration, while the management functionalities are specified in the functional elements slice

fault/security/charging management, slice resource monitoring and analytics and resource repository,

working together to achieve the slice lifecycle management objectives.

Figure 7 shows this set of functional components.

Figure 8. Network slice instance management functional architecture

(Source: Recommendation ITU-T Y.3011).

D4.1: Provisional API and Information Model Specification

NECOS project

20
EUB-01-2017

Similarly, ITU-T Y.3011 also specifies the network slice instance management functional architecture

and components, as well as its relationships and interfaces with slice lifecycle management and

orchestration functional component and external management systems, as illustrated in Figure 8.

Recommendation ITU-T Y.3011 Section 11 presents the slice lifecycle management procedure, as stated

below in brief:

• The IMT-2020 customer requests a slice to be provisioned with its specified service

requirements;

• IMT-2020 slice lifecycle customer care support (SLMCCS) functional element receives the

customer's request and carries it to the slice capacity planning and optimization functional

element (SCPO). SCPO then determines an optimal slice plan based on the available resources

which matches the customer's request;

• Once the provisioning policy is determined, SCPO requests provisioning to slice provisioning

(SP) functional element. SP then performs the requested slice provisioning task. Upon

completion of the provisioning process, SP sends a provision reply message to the customer via

SLMCCS. At the same time, it sends a provision status slice resource monitoring and analytics

functional element to initiate the collection and monitoring of the provisioned resources. It also

sends the status update to slice resource repository (SRR) to store the provisioned resource

information;

• Slice Resource Monitoring and Analytics (SRMA) performs collection, monitoring, and

analysis tasks of the provisioned slice resources. Data and information collected and analysed

is then stored in SRR for further processing by other functional elements;

• When SRR receives any resource status updates, it stores them in the repository and, at the same

time, it emits notification to all functional elements that are listening to the status updates (slice

fault management - SFM, slice security management - SSM, slice charging management - SCM,

and SCPO);

• When SCPO receives the notification, it updates available resource status and determines if re-

optimization is needed upon status updates;

• SP, upon receiving the provisioning update requests, performs re-provisioning tasks for the

provisioned slices, generating provision status reports to the related functional elements.

In April 2018, ITU-T has released Draft Recommendation ITU-T Y.3112 (Y.IMT2020-MultiSL) -

Framework for the support of Multiple Network Slicing. As presented in its summary, this

Recommendation describes the concept of network slicing and use cases of multiple network slicing,

enabling a single device to simultaneously connect to different network slices. The use case describes

the slice service type for indicating a specific network slice and the slice user group for precisely

representing the network slice in terms of performance requirements and business models. Finally, it

also specifies the high-level requirements and high-level architecture for multiple network slicing in

IMT-2020 network.

As far as it can be seen, APIs for network slicing in clouds is still a pending issue for ITU-T IMT-2020

future evolvements.

2.1.4 Open Grid Forum

The Open Grid Forum (OGF) is committed to the evolution and adoption of advanced applied distributed

computing, such as cloud, grid, and networking, through a highly involved open community. The OGF

aims at developing and promoting innovative scalable techniques, applications, and infrastructures in

order to increase productivity in both enterprise and academy communities. The open community

consists of thousands of individuals spread out in industry and research, representing more than 50

countries, over 400 organizations.

The work is carried out through community-initiated working groups that collaboratively develop

standards and specifications with other leading standards organizations, software companies, and future

D4.1: Provisional API and Information Model Specification

NECOS project

21
EUB-01-2017

users. Its organizational members, including technology companies and research institutions in

academia and government, are responsible for funding the OGF. Several events to further develop grid-

related specifications and use cases are hosted by OGF each year.

Currently, the OGF working groups have been studying several proposals, and the most relevant to

NECOS is the Open Cloud Computing Interface (OCCI), which focuses on the cloud computing IaaS

based model. OCCI is a protocol and API that aims to enable the development of interoperable tools for

common tasks, including deployment, autonomous scaling, and monitoring.

As shown in Figure 9, the OCCI interface is a boundary protocol and API that acts as a service front-

end to a provider’s internal management framework, and it is placed in a provider’s architecture.

Figure 9. OCCI Interface (Source: OCCI, http://occi-wg.org/about).

End-users and other system instances can be seen as service consumers, and OCCI is suitable for both

cases. As a key feature, it can be used as a management API for all kinds of resources, while at the same

time maintaining a high level of interoperability.

In summary, OCCI is able to abstract and generalize methods or call specific functions of a particular

VIM (or any other management software). It does not have an API to directly instantiate or monitor a

slice. Some close features can be found at the OpenStack OCCI Interface implementation

(https://github.com/openstack/ooi), as shown in Figure 10, which is capable of invoking OpenStack

standard commands in a generic way.

In a general way, with the exception of OCCI, OGF does not have standards that may contribute to the

specification of both Client-to-Cloud and Cloud-to-Cloud APIs. That is, the OGF still has no efforts

aimed at slicing or networking slice. There are OCCI implementations that leverage communication

with some VIMs, such as OpenStack, OpenNebula and CloudStack; but with a very specific focus on

cloud computing.

https://github.com/openstack/ooi

D4.1: Provisional API and Information Model Specification

NECOS project

22
EUB-01-2017

Figure 10. Openstack OCCI interface implementation

(Source: OCCI, http://occi-wg.org/tag/openstack).

2.1.5 Initiatives in Other Standards Development Organizations

Some other Standards Development Organizations (SDOs), as well as industrial associations are looking

at the network slice concept from different angles and perspectives [CONTRERAS18]. From the

provider’s point of view, there is a risk of fragmenting the conceptual approach to network slices, since

small differences can provoke incompatibilities among the different approaches. It is, therefore,

necessary to reach consensus on common terms, definitions, rationale, ideas, and goals to properly

normalize the concept of network slicing.

The NGMN Alliance [NGMN] has provided a primary description of the network slice concept as

mentioned in the introductory section. The NGMN view is that of a 5G slice as a composition of a

collection of 5G network functions and specific Radio Access Technology settings that are combined

for the specific use case or business model, while leveraging NFV and SDN concepts. The network slice

concept is organized in a layered manner [NGMN], differentiating the service instance layer, comprising

the end-user of business services; the network slice instance (NSI) layer, as a set of functions forming a

complete instantiated logical network; and the Resource layer, consisting of both physical and logical

resources. In this layered view, the NSIs can be potentially shared among multiple service instances.

3GPP [3GPP] differentiates among network slices and network slice instances. On one hand, a network

slice represents a logical network providing specific network capabilities and network characteristics.

On the other hand, a network slice instance is defined as a deployed network slice, that is, a specific set

of network function instances and associated resources.

ETSI NFV [NFV] specifies network operators’ perspectives on NFV priorities for 5G, network slicing

support with ETSI NFV architecture and an E2E network slicing framework. Another recent

development within ETSI Zero Touch Network and Service Management Industry Specification Group

(ZSM ISG) is specifically devoted to the standardization of automation technology for network slice

management [GOTO18]. Within the ETSI Multi-access Edge Computing (MEC) group, a new work

item called “MEC support for network slicing” [MEC] seeks to identify the necessary support for

network slicing, evaluating the gaps from MEC features and functions, and identify the new

requirements.

The BBF [BBF] is also approaching network slicing by augmenting the previous management functions

by defining new and complementary ones, such as Access Network Slice Management, Core Network

Slice Management, and Transport Network Slice Management. Each one of them is intended to take

care of the slice lifecycle management of each particular network slice subinstance (i.e., access, core, or

transport).

D4.1: Provisional API and Information Model Specification

NECOS project

23
EUB-01-2017

2.2 Information models

2.2.1 NOVI

The FP7 project NOVI [novi2015] defined an architecture for supporting federation of infrastructures.

NOVI has a Service Layer that allow users to have a unique interface to access and use resources in

different testbeds. Access to the testbeds, authorization policies, monitoring information and selection

of resources are integrated among platforms and implemented in the NOVI layer. The project identified

the definition of a common Information Model (IM) as the essential element to achieve the federation

goals. Their model was intended to support virtualized resources and context-aware resource selection;

to be vendor independent; to support monitoring and measurement concepts, and to support management

policies.

NOVI uses Web Ontology Language (OWL) for modelling virtualization explicitly for both, computing

and networking devices using Web Ontology Language (OWL). It is vendor-agnostic, modular, and

composed of three main ontologies: (i) resource ontology, (ii) monitoring ontology and (iii) policy

ontology.

Resource Ontology

Figure 11 partially depicts NOVI's resource ontology. Besides the ontology-based substrate, it is a more

or less common representation of resources and services.

Figure 11. NOVI ontology for modelling resources and services (Source: [novi2015]).

In particular, it is worth noting the classes "Location" and "Lifetime". The former is an approximate

geographical location to describe which resources share the same location. It can also be extended with

properties such as GPS coordinates. The latter is used to describe the time dimension of a reservation,

but it can also be used to describe the availability of nodes, e.g., that a node is not available during a

maintenance period.

The Service class allows the user to express the desired service-level. This allows the user to decouple

the service request from the actual physical implementation.

D4.1: Provisional API and Information Model Specification

NECOS project

24
EUB-01-2017

Figure 12 shows how network elements are connected in paths and nodes with unidirectional links. The

authors justify this decision saying that “has been a conscious choice to follow the Network Markup

Language (NML) [NML] model, which follows the philosophy that a unidirectional model can describe

a bidirectional model, but not vice versa”.

Figure 12. Network connectivity properties defined in the NOVI resource ontology

(Source: [novi2015]).

Monitoring Ontology

Figure 13 depicts NOVI's Monitoring Ontology. An interesting aspect is the inclusion of modules, such

as the Query model or the Statistic Model, which are semantic bridges between data consumers and data

generators.

This model is designed to store static and dynamic information. By static information, NOVI refers to

constant characteristics of the resource, or those that may change very infrequently (e.g., number of

CPUs in a server). Dynamic information encompasses attributes, such as the utilization of a CPU core.

In NOVI, the description of resources is carried out at two abstraction levels: physical resources, and

virtual resources. At the physical resource level, when the user requests a virtual testbed (a Topology),

it may contain runtime, dynamical constraints, such as CPU or main memory. At the virtual level instead,

there is the monitoring support for the virtual testbed. Given that the user successfully acquires a virtual

topology, NOVI offers services to keep track of its certain temporal variables. For instance, a user is

interested in the evolution of the round trip delay in certain links of his topology. These two

complementary abstraction levels split between substrate monitoring and slice monitoring.

D4.1: Provisional API and Information Model Specification

NECOS project

25
EUB-01-2017

Figure 13. NOVI’s modular ontology for modelling monitoring data and tasks

(Source: [novi2015]).

It is also interesting to see the existence of the unit model where the fundamental concepts of the

Monitoring Ontology are laid down; these are definitions of levels, dimensions, units and unit prefixes.

This yields clear semantics to the data stored in the monitoring ontology.

Figure 14. NOVI policy ontology types (Source [novi2015]).

D4.1: Provisional API and Information Model Specification

NECOS project

26
EUB-01-2017

Policy Ontology

NOVI's Policy Ontology, as depicted in Figure 14, includes the classic authorization policies and ECA

policies. In addition to them, NOVI models an interesting entity from the NECOS' point of view, the

Mission Policies, used to define inter-platform duties, i.e., the management obligations that a platform

must fulfil against its peer platform in a NOVI federation.

2.2.2 ETSI NFV MANO

The European Telecommunications Standards Institute (ETSI) has defined a framework for Network

Functions Virtualization (NFV) and Management and Orchestration Architectures (MANO). More

specifically, MANO, as a top-down approach, consists of three main software layers:

• NFV Orchestrator (NFV-O) is responsible for network service management, such as to create

virtual function instances to meet service requirements. NFV-O responsibilities include the

onboarding of new Network Service (NS) and the NS lifecycle management. Other functionalities

include the global resource management (topology of the connected VNFs and PNFs), the

authorization of NFV infrastructure resource requests and the policy management for NS instances.

• VNF Manager (VNF-M) manages the lifecycle of the components and services. The VNF-M

supervise the management of the VNF instances, i.e., VNF starts from VNF-M descriptor and is

managed by VNF-M, also VNF-M determines the health of the VNF.

• Virtualized Infrastructure Manager (VIM) manages NFV infrastructure resources in a single

domain. VIM controls and manages the NFV infrastructure resources in one operator’s

infrastructure sub-domain. Moreover, the VIM is responsible to collect and forward the network

performance measurements.

Figure 15. NFV MANO reference architecture (Source: ETSI NFV MANO WI document).

As shown in Figure 15, apart from the aforementioned 3-layers, the NFV MANO consists of 4 types of

data repositories (databases that keep different types of information):

• The NS catalog, which is a set of pre-defined templates that define how services may be created

and deployed; the same repository stores the connectivity parameters through virtual links for

future use.

• The VNF catalog, which is a set of templates that describe the deployment and operational

characteristics of available VNFs.

D4.1: Provisional API and Information Model Specification

NECOS project

27
EUB-01-2017

• The NFVI resources repository, which maintains information about available/allocated NFVI

resources.

• NFV instances repository, which maintains information about all function and service instances

throughout their lifetime.

MANO Information Model

ETSI OSM is delivering an open source Management and Orchestration (MANO) stack aligned with

ETSI NFV Information Models that focuses on network service orchestration. Information in a network

service (NS) is structured into information elements, which might contain a single value or additional

information elements that form a tree structure. Information element are classified as one of the

following types: leaf element (single information element), reference element (information element that

contains a reference to another information element) and sub-element (information element that

specifies another level in the tree). The information elements can be used in two different contexts: as

descriptors or as run-time instance records. A descriptor is defined as a configuration template that

defines the main properties of managed objects in a network.

The network service descriptor (NSD) is the top-level construct used for designing the service chains,

referencing all other descriptors that describe components that are part of that network service. The NSD

consists of static information elements that describe deployment flavors of the network service. The

NSD is used by the NFV orchestrator to instantiate a network service.

Figure 16. MANO information model (Source: ETSI NFV MANO WI document).

The following four information descriptors are defined apart from the top-level network service (Figure

16):

D4.1: Provisional API and Information Model Specification

NECOS project

28
EUB-01-2017

• Virtual network function (VNF) information element, which is a deployment template that

describes the attributes of a single VNF.

• Physical network function (PNF) information element, which describes a physical (legacy)

network function and includes only the interconnections (connection points and virtual links). The

PNF descriptor is needed if the network service includes a physical device to support network

evolution.

• Virtual Link (VL) information element, which describes the resource requirements needed for a

link between VNFs, PNFs and end-points of the network service, which could be met by various

link options that are available in the NFVI.

• VNF forwarding graph (VNFFG) information element, which is a graph, specified by a network

service provider, of bi-directional logical links that connect network function nodes, where at

least one node is a VNF through which network traffic is directed.

Software that provides VNFs can be structured into software components, the implementation view of

a software architecture. These components can then be packaged into one or more images, the

deployment view of a software architecture. These software components are called Virtual Network

Function Components (VNFCs). VNFs are implemented with one or more VNFCs, where each VNFC

instance generally maps 1:1 to a VM image or a container, as defined in the VDU.

Reference Points

MANO has multiple reference points that appear as interconnection points between the functional blocks,

as shown in Figure 15, i.e., Or-Vi, NF-Vi, Or-Vnfm. Designed with open, standards-based APIs, such as

NETCONF and REST, and common information models, such as YANG, the Os-ma-nfvo interface is

exposed through open, standards-based interfaces, such as REST. This design enables upper-level

orchestrators, such as Business Process Orchestrators or Service Orchestrators, to automate the entire

service bring-up process.

2.2.3 4WARD

The 4WARD project [4WARD] designed an architecture for the provisioning and management of

service-tailored virtual networks across multiple administrative domains (Figure 17). 4WARD relies on

a centralized coordinator, namely Virtual Network Provider (VNP), for virtual network deployment. In

particular, the VNP receives virtual network topology requests from a client, and subsequently partitions

the request across the participating infrastructure providers. Then, each infrastructure provider receives

his corresponding virtual network segment, which he embeds onto his physical topology. Finally, the

topology segments are stitched together to form a virtual network requested by the clients.

In this context, the project has specified an information model for the description of the infrastructure

and the virtual network resources. The information model is used by all actors to specify and exchange

virtual/physical resource information during resource advertisement, assignment, monitoring, and

allocation of virtual networks. The model uses the abstraction “Network Element” to describe nodes,

interfaces, links, and paths. Each resource element has a unique identifier and a set of attributes. The

information model ensures the binding of different elements, such as the binding of links with paths,

interfaces with nodes, and so forth.

Figure 18 shows an UML diagram that expresses the relationships between virtual resources. UML is a

modeling language that separates the conception phase from the implementation phase and provides a

generic description that is implementation independent. 4WARD has particularly selected XML for the

implementation of the information model, represented with UML.

D4.1: Provisional API and Information Model Specification

NECOS project

29
EUB-01-2017

Figure 17. The 4WARD approach to network virtualization (Source: 4WARD project presentation)

The 4WARD information model provides a detailed description of infrastructure and virtual resources

to meet the requirements of virtual network provisioning. The different levels of abstractions offered by

the model comprise an additional benefit. However, in the context of network slicing, the specific model

exhibits considerable limitations. First, there are not sufficient elements and attributes in the model to

express service elements (e.g., vNFs) as well as vNF graphs. Hence, this model cannot support the slice

specification requirements in all NECOS modes (e.g., Mode 3 which is associated with service-oriented

slice requests). Furthermore, the 4WARD information model does not include descriptors for dedicated

infrastructure elements, such as switches, routers, Wi-Fi access points, and base stations. Another

limitation of the model is the lack of support for extended platform awareness (EPA), i.e., the exposure

of certain capabilities of the infrastructure to the tenant for slice deployment. EPA is a significant feature

which needs to be incorporated into information models, given the diversity of features available in

modern commodity servers and cloud platforms.

Figure 18. UML diagram of 4WARD information model (Source: [MEDHIOUB2011).

VNet Embedding

(Resource Selection)

1

Management, Control

and Monitoring

VNet

Provider

Vnet

Request

Running VNet

Resource Discovery

and Matching

Substrate Network

VNet Instantiation

(Resource Binding)

Request Splitting
(in the multiple Inf.

Providers case)

VNet graph &

Candidate resources

VNet

Operator

Selected

resources Resource

Binding

Infrastructure

 Provider

Embedding

Algorithms

2

4
3

Infrastructure

 Provider

Interdomain

D4.1: Provisional API and Information Model Specification

NECOS project

30
EUB-01-2017

2.2.4 COMS

The Common Operation and Management of network Slicing (COMS) [ietfcoms2018a] aims at

providing a comprehensive approach for the overall operation and management of network slicing, for

both network slice operators and network slice tenants. Working on the top network orchestrator inside

Transport Network region which directly communicates with the network slice provider, COMS enables

technology-independent network slice management [ietfcoms2018b]. In this context, COMS provides a

technology-independent information model for transport network slicing [ietfcoms2018c].

The COMS idea of a general information model serves the need to fill the gap between technology-

agnostic network slicing service requirements, usually desired by the tenants, and technology-specific

slices’ implementation, typically supported by the service providers. Such a model describes the entities

that a network slice consists of, along with their properties, attributes, operations and the way they relate

to each other, whilst it remains independent of any specific repository, software, protocol or platform.

The COMS information model uses the data model for network topologies as a base [ietfdata2018] and

enhances it with new slice-specific attributes under the “netslice” namespace. COMS uses the YANG

data modeling language [RFC7950] to make a technology independent representation of the transport

network slicedata model. This information model includes, among others, the following elements, which

are represented in Figure 19:

• connectivity resources: refer to nodes and links that represent virtual nodes and links exposed to

the slice user. The COMS augments these two elements with further new attributes, compared to

the model [ietfdata2018], in order to represent requirements, configuration and statistics associated

with a node (i.e., sent/received-packets) and QoS information associated with a link (i.e., link-

bandwidth-agreement).

• storage resources: the location attribute describes the location of the storage unit, and other

interesting for NECOS' modelling attributes include access-mode (public or dedicated) and read-

write-mode with read-only and read/write options.

• compute resources: the location attribute describes the location of the compute unit, and other

interesting for NECOS' modelling attribute is access-mode (shared or dedicated).

• service instance based on predefined function blocks: some general features can be grouped into

function blocks in advance, such as load-balancer, firewall.

• network slice level attributes: defines a set of attributes directly applicable to a network slice,

such as service-time-start/end and lifecycle-status (i.e., construction, modification, activation,

deletion).

COMS is a simple model that allows for extension and covers some of NECOS' modelling needs

regarding its networks domain. It is interesting to note that the model defines a set of operations that

must be supported for the complete network slice. However, apart from the network slice as a whole,

each element insides a network slice should also be able to be operated individually. Operations defined

by the COMS are:

• construct: construct a network slice,

• delete: delete a network slice,

• modify: modify a constructed network slice,

• set_element_value: set the value of an indicated element in a network slice,

• get_element_value: get the value of an indicated element in a network slice,

• monitor: monitor the status of a network slice, and

• enable_report: enable the active report to the subscribes/management system when the

monitored status changes beyond expectation.

The aforementioned operations map to NECOS slicing model but they must be extended to

accommodate its different slicing modes.

https://tools.ietf.org/html/rfc7950

D4.1: Provisional API and Information Model Specification

NECOS project

31
EUB-01-2017

Figure 19. COMS tree of attributes for a slice (Source: [ietfcoms2018b]).

2.3 Summary

In summary, the context of Slice-as-a-Service, as promoted by NECOS, requires the specification of an

Information Model that will describe both the infrastructure resources/elements along with their

properties, as well as the slice components and the service elements deployed on top of them. The

NECOS information model should exploit significant features of state-of-the art models, while

overcoming limitations mainly related to network slicing and multi-domain physical infrastructures.

The NOVI information model provides descriptors for resources and services, but it lacks of support for

slice specification. Hence, it could not be adopted in the NECOS context. However, some of its classes,

e.g., the Location and Lifetime are useful and can be exploited by the NECOS information model to

indicate and satisfy geo-location constrains, and specify time-related requirements for the creation and

decommission of a slice. Limitations regarding the slice description and attributes to express service

elements also exist in the 4WARD information model. The 4WARD model is primarily designed to

specify objects and attributes of the infrastructure and the virtual network resources. The most suitable

information model for network slicing is the COMS model. It provides a set of useful slice-specific

attributes for NECOS, such as the starting and ending time of a service, the slice lifecycle status, as well

as attributes related to slice requirements, e.g., reliability levels, throughput threshold, latency or jitter

agreement. The MANO information model also provides useful features with the EPA support being the

most notable. In particular, the notion of EPA hides the heterogeneity among providers and exposes

certain infrastructure features to the tenant. Host, hypervisor, VIM, vSwitch, interface and service-end

are some of the EPA attributes incorporated in the NECOS information model. Overall, the NECOS

model incorporates features from the 4WARD, COMS and MANO models.

Along with the provisional information model described in the following section, cloud API are further

defined exploiting the infrastructure and network slicing features exposed by the information model.

Regarding the APIs, the NECOS takes advantage of the 5GEx proposal, which defines three main

network interfaces: (i) between the customer and the multi-domain orchestrator for service exposure

(B2C), (ii) for multi-domain orchestrators' interaction (B2B) and (ii) for the interaction between the

multi-domain orchestrator and the domain orchestrators within the same administrative domain. In

accordance with the aforementioned scheme, NECOS has defined Client-to-Cloud APIs and a set of

interfaces composing the Cloud-to-Cloud APIs, which will be enhanced with slice-related methods for

slice provisioning and run-time management. An API for the deployment, scaling and monitoring of

infrastructure resources has been also specified by the OGF, (i.e., OCCI); however, this API does not

support network slicing.

D4.1: Provisional API and Information Model Specification

NECOS project

32
EUB-01-2017

3 NECOS Information Model

This section presents the first version of the NECOS information model used for slice provisioning and

run-time management. The main objectives of the information model are: (i) the detailed description of

all infrastructure resources/elements and their properties, and (ii) the description of slice components

and service elements that could potentially be deployed within slices. To meet these requirements, we

introduce an information model for network slicing, which provides resource descriptions at different

levels of abstraction.

Initially, we consider three abstraction levels which are equivalent to the Slice Database, the Tenant and

the Infrastructure Provider viewpoints (see deliverable D3.1). In Section 3.1, we discuss a high-level

representation of the whole model, which currently resembles the Slice Database view, since the latter

component keeps track of all required information for the slice operation. In Section 3.2, we describe in

detail the slice specification model, i.e., the objects and properties of the information model required to

specify/request slices and address certain slice components or service elements deployed within slices;

this comprises the Tenant's view of the model. In Section 3.3, we provide a detailed specification of the

model's objects and properties for the infrastructure description. This is essentially the Infrastructure

Provider's view, which is detailed, and its limited representation is communicated through the Slice

Agent and Slice Controller components to the NECOS architecture (see D3.1), due to competition

purposes, i.e., Infrastructure Providers are not willing to share detailed information about their

infrastructure. In Section 3.4, we consider a web load-balancing slice example and highlight key features

of the NECOS information model using simple YAML descriptions.

At this point of investigation, we work towards defining the unified NECOS information model. Such

complete definition requires the input of the Proof-of-Concepts implemented at the end of the first year,

which will exercise the first model definition. In the following, we discuss in model detail the three

views of the model.

3.1 Information model overview

A model instantiation very close to the unified NECOS information model is at the heart of the NECOS

platform, the Slice Database which is tightly coupled with the Resource Orchestrator. Such database

keeps track of all information on the deployed and operating slices. This model representation bridges

the network slice specification defined from the Tenant with the resource representation defined from

the involved data-centre and WAN providers. As discussed above, the Slice Database stores a limited-

view of the infrastructure that provides resources for the slice. The term “limited” reflects the limited

information disclosure exercised by infrastructure providers on third parties. A high-level representation

of the unified NECOS information model is shown in Figure 20.

In particular, a slice description contains a Network Slice Specification and a Slice Infrastructure

Description. The former is generated based on a service graph, which consists of service functions (fn)

and service links. Service functions are further decomposed to service elements. The service functions

represent the specifications for functional entities to be instantiated and the service elements their actual

instantiation.

The Slice Infrastructure Description contains elements that reflect the slice infrastructure graph, i.e.,

DC and Network slice parts, which may be deployed on top of separate cloud or network domains. These

parts are linked to the service-elements that they host, as depicted in Figure 20. For instance, a “dc-slice-

part” contains fields reporting provider-specific information, e.g., which slice provider hosts the specific

part, a VIM or a DC Controller. In addition, each slice part has one or more references to the service

elements it will host. Obviously such information will be available after the successful completion of

the resource discovery process. Examples of YAML messages regarding the Slice Infrastructure

Description are provided in Section 4.

D4.1: Provisional API and Information Model Specification

NECOS project

33
EUB-01-2017

In the following subsections, we elaborate on the two primary aspects of the NECOS information model,

the Network Slice Specification and the Infrastructure Description. As an outcome of our extensive

literature research (i.e., Sections 2.2 and 2.3), the NECOS model is influenced from the MANO, NOVI

and COMS information models.

Figure 20. Overview of the NECOS information model.

3.2 Network slice specification

As NECOS deals with the provisioning, configuration, and run-time management of network slices, the

NECOS information model needs to encompass all information required by the Tenant in order to

specify slice and address slice components as well as service functions deployed within slices.

Essentially, the information model will be used in different occasions by the Tenant, e.g., when a Tenant

submits a request for slice creation, when a Tenant wishes to submit a request on an existing slice for

the modification of certain slice components or the scaling of the slice.

One of the challenges posed in terms of slice specification is that a slice may represent different views

and/or may serve different purposes. For example, a slice may simply correspond to a subset of the

physical infrastructure, essentially comprising a set of infrastructure elements, such as cloud servers. In

this case, a Tenant will be granted with such slice and may later decide which services or applications

he/she wishes to deploy. However, it should be also possible for a NECOS system to provision and

manage service-tailored slices, i.e., slice specifications that contain a set of service functions, such as

VNFs. In the NECOS approach, this diversity in terms of slice request will be dealt with the translation

of service demands into resource demands, facilitating resource assignment and allocation for slice

creation. Nevertheless, in terms of slice specification, NECOS introduces a versatile information model

that meets the requirements of all these aforementioned slicing levels, i.e., by completing different sets

of attributes.

D4.1: Provisional API and Information Model Specification

NECOS project

34
EUB-01-2017

The slice viewpoint of the NECOS information model is illustrated in Figure 21. The model associates

slices with services, which are in turn, associated with services functions and corresponding service

elements (i.e., instantiated service functions). The information model further provides specifications of

the VIM (which will be instantiated on demand in Mode 0). This allows the tenant to express preferences

for the VIM (e.g., request the instantiation of OpenStack). This is facilitated by the notion of Extended

Platform Awareness (EPA), which will be explained in more detail below.

Figure 21. Slice specification with the NECOS information model.

In the following, we elaborate on the objects and attributes of the information model for the slice

specification:

Slice: The Slice object provides a general description of the slice, which is further associated with

services, as shown in Figure 21. This object includes the following attributes:

• Slice ID

• List of service deployed within the slice

• General service requirements, for example: cost model, slice lifetime (e.g., start-time and end-

time), geographical or other slice constraints (e.g., maximum number of slice parts), etc.

Service: The Service object provides a general description of a service, which is associated with Service

Functions as well as Service Links. This object includes the following attributes:

• Service ID

• Service description

• List of service functions

• List of service links

Service Function: The Service Function object is a descriptor for a service function, which is associated

with Virtual Deployment Units (VDU) and interfaces. This object includes the following attributes:

• Service function ID

D4.1: Provisional API and Information Model Specification

NECOS project

35
EUB-01-2017

• Location preference, which can be specified in the form of coordinates or with the name of a

location (e.g., city)

• Distance tolerance from preferred location

• Number of interfaces

• Placement group (e.g., isolation, co-location), which can be used to enforce the co-location or

isolation among a group of service functions

Service link: This object describes a link and is associated with interfaces. The object has the following

properties:

• Service link ID

• Bandwidth, which specifies the amount of required bandwidth

• Delay, which specifies an upper bound on delay for this link

• Jitter, which specifies an upped bound on jitter for this link

VDU: The VDU object binds a service function with resource requirements, a range of EPA attributes,

and monitoring parameters, providing great flexibility in the specification and monitoring of service

functions. This object includes the following attributes:

• VDU ID

• VDU name

• Number of service function instances

• Flavor

• Software image

Flavor: The Flavor object specifies resource demands for services functions and has the following

attributes:

• Flavor ID

• Number of CPUs

• Amount of main memory

• Amount of storage space

EPA: Inline with ETSI NFV MANO, we employ the notion of EPA to assist tenants in expressing

preferences for the instantiation of service functions and VIMs. In a similar manner, we have further

extended the application of EPA to virtual switches and hypervisors.

Host EPA: This object specifies the following EPA attributes for the host at which a service function

will be deployed:

• CPU Model (Required / Preferred), e.g., Westmere, Sandybridge

• CPU Architecture (Required / Preferred), e.g., x86, x86_64, i686, ARM, etc.

• CPU Instruction sets (Required / Preferred), such as AES

• Acceleration (Required / Preferred)

• Acceleration technique, e.g., DPDK, Netmap, etc.

Hypervisor EPA: This object specifies the following EPA attributes for the hypervisor deployed in a

cloud domain:

• Hypervisor, such as Xen or KVM

D4.1: Provisional API and Information Model Specification

NECOS project

36
EUB-01-2017

• Version, which indicates a preferred version of the requested hypervisor

vSwitch EPA: This object specifies the following EPA attributes for virtual switches that can be

deployed in the slice:

• Acceleration (Required / Preferred)

• Acceleration technique

• Hardware Offloading (Required / Preferred)

VIM EPA: This object specifies the following EPA attributes for the VIM, which will be set up to

manage and control the slice:

• VIM, such as Openstack, OpenVIM, etc.

• Version, which indicates a preferred version of the requested VIM

• Dedicated VIM (Required / Preferred)

Monitoring parameters: This object contains a wide range of parameters for monitoring the

performance and reliability of service functions. Examples of such parameters include various counters

(e.g., number of packets sent/received, number of bytes sent/received) as well as the monitoring interval.

Some of the parameters may be associated with Service Level Agreements (SLA), helping the client

assess the achievable SLA level of his cloud service. In this deliverable version, we refrain from

presenting an exhaustive list of monitoring parameters for the NECOS information model. Nevertheless,

we will provide further details about the monitoring parameters in D4.2.

Service end-point: This object specifies an end-point for services, augmenting the binding of service

with other applications or services. This object includes the following attributes:

• Service end-point name

• Type, i.e., ingress or egress

• Interface

• Application

• Port number

• Protocol, i.e., TCP or UDP

3.3 Infrastructure description

The physical infrastructure spans datacenters (that provide computing resources) and wide-area (or

transport) networks that provide connectivity between the datacenters from which resources will be

allocated for the slice instantiation. The NECOS information model aims at capturing the main resource

and network elements available in datacenter and transport networks, such as servers, routers, switches,

controllers, links, etc. Each object in the information model is associated with a set of properties that

represent certain attributes for the infrastructure element. The range of properties for each object is

certainly not exhaustive but can be easily extended with additional properties, if needed.

In the following, we present the main objects that are supported by our information model, including

their main properties.

Infrastructure: The Infrastructure object provides a general description of the whole infrastructure, on

top of which, network slices will be instantiated. This object of the information model encompasses the

following attributes:

D4.1: Provisional API and Information Model Specification

NECOS project

37
EUB-01-2017

• Infrastructure ID

• List of domains comprising the infrastructure

Domain: The Domain object provides a general description of an infrastructure domain, which, in the

case of NECOS, may be either a datacenter network (which corresponds to a traditional cloud), an edge

cloud, or a WAN that provides connectivity among different datacenters. This object has the following

attributes:

• Domain ID

• Provider, i.e., the infrastructure provider for this domain

• Type, i.e., datacenter for traditional clouds, (mobile) edge cloud, or WAN (see the respective

telco cloud and MEC use cases in the deliverable D2.1)

• List of the hosts in the corresponding network domain

• List of the network elements in the network domain

• List of the links available in the network domain

Network Element: The Network Element object provides an abstraction of network elements, such as

routers, switches, and Wi-Fi access points (AP). A network element includes the following attributes:

• Network element ID

• Availability

• Type, i.e., the type of network element, such as router, switch, or AP.

• Number of ports

• Forwarding Information Base (FIB) size

Router: This object describes a router and includes the following attributes:

• Router ID

• Role, i.e., edge or core router

• Packet types that can be processed, such as IP, MPLS, Ethernet

• Monitoring parameters for the router

Switch: This object describes a datacenter network switch and includes the following attributes:

• Switch ID

• Role, e.g., Top-of-the-Rack, Aggregation, or Core switch

• Packet types that can be processed, such as IP, MPLS, Ethernet

• Monitoring parameters for the switch

Access Point: This object describes a Wi-Fi access point and includes the following attributes:

• Access Point ID

• Availability

• MAC, i.e., MAC specifications supported, such as 802.11n

• Monitoring parameters for the AP

Host: This object describes hosts and encompasses the following attributes:

• Host ID

• Hostname

• Availability

D4.1: Provisional API and Information Model Specification

NECOS project

38
EUB-01-2017

• Location

• CPU, which contains a pointer to a separate object, namely CPU

• Memory, i.e., the amount of available main memory

• Storage, i.e., the amount of available storage capacity

• Number of ports

• Monitoring parameters for the host

• Other service-specific host capabilities, e.g., energy-measurement hardware, SAS disks

optimized for storage nodes, etc.

CPU: This is a dedicated object for CPU-related specifications. The CPU object is associated with the

Host object and contains the following attributes:

• Cycles, which specifies the number of available CPU cycles per core

• Number of cores

• Model, e.g., Westmere, Sandybridge

• Architecture, e.g., x86, x86_64, i686, ARM

• Instruction set, e.g., AES

Controller: This object is associated with hosts, providing additional properties for hosts that serve as

DC or network controllers. The Controller object contains the following attributes:

• Controller ID

• Role, i.e., DC or network controller

• Configuration protocol, i.e., the protocol used to configure the DC or the network (e.g., SNMP,

YANG, OpenFlow)

• Configuration IP address

Link: This object describes network links with the following attributes:

• Link ID

• Availability

• Type of the link, e.g., point-to-point, point-to-multipoint

• Capacity

• Delay

• Jitter

Port: This object describes network ports and include following attributes:

• Port ID

• Availability

• Capacity

• List of the queues that may have been configured in the port, in the case of hardware multi-

queuing (e.g., SR-IOV)

• IP address

• MAC address

Queue: This object describes queues in network ports that could be potentially configured, when there

is support for hardware multi-queuing. The Queue object has the following attributes:

• Queue ID

• Availability

• Capacity

D4.1: Provisional API and Information Model Specification

NECOS project

39
EUB-01-2017

Path: This object describes network paths that encompass a set of links. The Path object has the

following attributes:

• Path ID

• Availability

• List of links that comprise the network path

• Capacity, which expresses the overall capacity of the path and corresponds to the minimum

capacity of all links that comprise the path

• Delay, which expresses the total delay incurred along the path

• Jitter, which expresses the overall jitter incurred along the path

• Disjoint links, which requires that all links comprising the path are disjoint

The UML diagram in Figure 22 illustrates the objects of the information model for the infrastructure

description, as well as the relations between these objects. We note that some of the objects have been

omitted in the UML diagram for clarity. One such object is the Wi-Fi access point, which is connected

to the Network Element object in a similar way with the other respective elements (i.e., router, switch).

This UML model can be easily implemented through more specific description languages or schemas,

such as XML, RDF, and YAML.

In the final version of this deliverable (i.e., D4.2), we will provide a refined version of this information

model, taking into account feedback from the ongoing NECOS system implementation.

Figure 22. Infrastructure description with the NECOS information model.

D4.1: Provisional API and Information Model Specification

NECOS project

40
EUB-01-2017

3.4 YAML Description Example

Hereby, we present a YAML example based on the NECOS information model. In particular, we

consider a simple slice that consists of a web server cluster and a load balancer, namely “Web Load

Balancing Slice”. This example is closely related to the Touristic Content Distribution scenario

presented in D2.1, albeit simpler. The tenant (Metropolitan Touristic Center – MTC) wishes to deploy

a CDN service that consists of three service functions, i.e., a load_balancer, an orchestrator and a cluster

of web servers (“web_server_VM”) in a slice that contains 2 DC slices parts and the link between them.

The section of the YAML specification first provides general information regarding the slice (Figure

23), including geolocation slice constraints (“location: EUROPE”), the number of the requested DC

and network slice parts, as well as slice requirements such as elasticity. For reasons of clarity, some

sections of the YAML description have been omitted.

slices:
 sliced:

 id: TouristicCDN_sliced

 name: TouristicCDN_sliced

 …

 slice-constraints:

 location: EUROPE

 dc-slice-parts: 2

 net-slice-parts: 1

 slice-requirements:

 elasticity: true

 …

 slice-lifecycle:

 description: lifecycle status

 status: construction

 cost:

 dc-model:

 model: COST_PER_PHYSICAL_MACHINE_PER_DAY

 value-euros: {lower_than_equal: 10}

 net-model:

 model: COST_PER_LINK_PER_DAY

 value-euros: {lower_than_equal: 50}

 slice-timeframe:

 service-start-time: {100918: 10 pm CET}

 service-stop-time: {101018: 10 pm CET}

 # at least one slice component and one VDU should be defined

 service:

 - service-function:

 …

 - service-function:

 …

 - service-link:

 …

Figure 23. YAML top-level descriptions.

The top-level slice description contains a section regarding the cost for the DC and WAN slice parts,

and the time-frame the slice is requested for (“slice-timeframe:”). The service section of the YAML

description includes the service specification, as discussed below. The “web servers” service element

specification is depicted in Figure 24. Such a service function description contains all the necessary

information for the NECOS system to create the slice hosting the service. For example, the specification

contains the number of instances of the “web server” service element, which is expressed as a range of

D4.1: Provisional API and Information Model Specification

NECOS project

41
EUB-01-2017

integers (1-75, instance-count: key), and other placement preferences, such as the fact that this specific

service element should be equally divided between two distinct slice parts (slice-part-count: {equal: 2}

and slice-part-ratio: {equal: 0.50}), etc. The rest of the sections include EPA attributes.

 service:

 - service-function:

 # defining web server cluster VDU

 service-element-type: vdu

 vdu:

 id: web_server_VM

 ...

 flavor:

 vcpu-count: 1

 memory-mb: 128

 storage-mb: 100

 vdu-image: 'web-server'

 instance-count: {in_range: [1, 75]}

 hosting: SHARED

 slice-part-count: {equal: 2}

 slice-part-ratio: {equal: 0.50}

 clustering: true

 epa-attributes:

 host-epa: ...

 hypervisor-epa: ...

 VIM-epa: ...

 vswitch-epa: ...

 ...

 interface:

 monitoring-parameters: ...

Figure 24. YAML specification of a service function.

For the specific service element, the associated EPA attributes are shown in Figure 25, where all resource

demands and constraints for this element are described.

 host-epa:

 cpu-model: PREFER_CORE2DUO

 cpu-arch: PREFER_X86_64

 cpu-vendor: PREFER_INTEL

 cpu-number: 2

 storage-gb: 2

 memory-mb: 4096

 host-count: {in_range: [10, 15]}

 max-host-count: undefined

 os-properties:

 # host Operating System image properties

 architecture: {equal: x86_64}

 type: linux

 distribution: ubuntu

 version: 16.04

 image-type: EMULAB

D4.1: Provisional API and Information Model Specification

NECOS project

42
EUB-01-2017

 host-image: ubuntu_linux_16.04_xen

 hypervisor-epa:

 type: XEN

 version: '4.5'

 VIM-epa:

 type: XEN-SERVER

 version: '7.5'

 vim-shared: true

 vim-federated: false

 vim-ref: undefined

 vswitch-epa:

 type: openvswitch

 accellaration: PREFERRED

 offload: PREFERRED

Figure 25. EPA attributes specification.

The specification of the service function interfaces defined by a corresponding YAML key as shown in

Figure 26. It should be noted here that we differentiate between service external and service internal

interfaces: the former are endpoints for users to access the MTC service offered by the slice, whereas

the latter are interfaces for connecting to other service parts. Thus, the internal interfaces are associated

with service-links, as discussed below.

 # defining web-server cluster's interfaces

 interface:

 - service-external-interface:

 name: wsc-eth0

 virtual-interface:

 internal-name: eth0

 type: VIRTIO

 bandwidth: '0'

 vcpi: '0000:00:0a.0'

 ip: undefined

 - service-internal-interface:

 name: wsc-eth1

 virtual-interface:

 internal-name: eth1

 type: VIRTIO

 bandwidth: '0'

 vcpi: '0000:00:0b.0'

 ip: undefined

 - service-internal-interface:

 …

Figure 26. Service function interface description.

This eventually leads to the service-link YAML description (Figure 27). A link has “link-end-references”

(link-end-ref: orc-eth1 and link-end-ref: wsc-eth1) where the values are internal interface ids of DC

D4.1: Provisional API and Information Model Specification

NECOS project

43
EUB-01-2017

slice parts. The rest of the fields contain information necessary to allocate appropriate network resources

for the link.

 - service-link:

 service-element-type: link

 link:

 name: orc-to-wsc

 type: MULTIPLEXED

 ends:

 - link-end-ref: orc-eth1

 - link-end-ref: wsc-eth1

 requirements:

 bandwidth-GB: 1

 constraints:

 hops: {lower_than_equal: 2}

 reservation-protocol: undefined

Figure 27. Service link description.

This concludes this example for service specification. In the following section, the same example will

be used to exemplify the Resource Discovery phase and illustrate better the information exchange that

takes place.

D4.1: Provisional API and Information Model Specification

NECOS project

44
EUB-01-2017

4 Slice Discovery Framework

The resource discovery framework, as described in the NECOS architecture work package (i.e., WP3),

is responsible to locate the appropriate resources that compose a slice, i.e., slice components that

correspond to service functions and service links, according to the information model. A Partially

Defined Template (PDT) message defines the general slice requirements and acts as the input to the

resource discovery framework. This message is created by the Slice Specification Processor and passed

to the Slice Builder. The Slice Broker is responsible to locate resources from both DC and WAN

providers to fulfil the slice requirements and prepare a corresponding response, namely a Slice Resource

Alternatives (SRA) message. In practice, the SRA message annotates the PDT message with alternative

slice component options.

This process involves the following three architectural functional components:

● Slice Builder (Builder), which is responsible for forming an appropriate request to the Broker (i.e.,

a PDT message), and selecting the most appropriate slice components, among alternatives

returned by the Broker in the form of an SRA message.

● Slice Broker, which receives requests from the Builder and replies with alternative responses that

fulfil the request, i.e., creates and responds with an SRA message for each PDT message it

receives.

● Slice Agent, which resides in the DC/WAN provider domain, replying to resource queries from

the Slice Broker. The Slice Agent receives the slice component requirements, checks the local

resource availability through communicating with its own DC/WAN Controller and responds with

one or more resource options.

Figure 28. Overview of the resource discovery workflow.

Although the above description implies a query/answer model, in which data regarding availability of

resources is dynamically collected for each request, a different model in which providers “push”

information to the Broker Agent might as well be used, with minor modifications in the flow described

below.

In the following, we highlight a basic slice resource discovery workflow. We assume that the builder

has already prepared a PDT message, which includes the preferable number of slice components, their

main resource requirements and the desirable connectivity among them. The basic steps of the workflow

are as follows:

1. The Builder sends to the Broker a request in the form of a partially defined slice template.

2. The Broker proceeds with the incoming slice request processing through the following steps:

2.1. Firstly, it queries the DC Slice Agents about the DC resources that are requested in the

slice template.

D4.1: Provisional API and Information Model Specification

NECOS project

45
EUB-01-2017

2.2. Subsequently, the Broker processes the DC resource responses received from the Slice

Agents. For sets of resource components that match the template, the broker identifies

potential network resource providers, and sends queries according to the connectivity

demands indicated in the template.

2.3. Finally, it collects available information, in the form of alternative resources for each

template’s slice component and conveys the response to the Builder.

3. The Builder receives the above information in the form of an SRA message and decides on the

final slice specification, completing the slice specification template and instantiating slice

components with the allocation of the respective resources.

In the following, we elaborate further on the form of messages exchanged between the components

stated above.

4.1 Partially Defined Template

The creation of the Partially Defined Template is the work of the Slice Specification Processor, which

is responsible for creating an initial template based on user service specification.

In the simplest case, the template has a complete specification of each component (resource) required

and only matching resources are returned in the responses. A more flexible setting involves a template

component to be annotated with general slice or resource-specific requirements, so that resource

providers can respond in a more flexible manner.

The PDT template must include both the desired slice topology, which encompasses the desired slice-

parts, along with any resources’ constraints on them and their connectivity (i.e., the slice graph). For

instance, below we present an abstract view of a simple exemplary template, represented in YAML

(Figure 29):

 slice:

 # definition of DC slice parts

 - dc-slice-part:

 name: dc-slice1

 vdus: …

 - dc-slice-part:

 name: dc-slice2

 vdus: …

 …

 - …

definition of WAN slice parts

 - net-slice-part:

 name: extrernal_ip_slice1-to-external_ip_slice2

 links:

 - dc-part1: dc-slice1

 - dc-part2: dc-slice2

 type: interaction

 …

Figure 29. Slice topology description in YAML.

D4.1: Provisional API and Information Model Specification

NECOS project

46
EUB-01-2017

Figure 29 indicates that the slice topology is clearly reflected in the YAML message. The two dc-slice

parts (i.e., the dc-slice1 and dc-slice2) should be connected via a network link, represented by the

external_ip_slice1-to-external_ip_slice2 inside the net-slice-part. We consider the former as nodes in

the slice graph, while the later corresponds to edges.

Each part carries information regarding the desired characteristics that should be met when instantiating

the component. Figure 30 depicts a more detailed specification of the dc-slice1 part of Figure 29.

 - dc-slice-part:

 name: dc-slice1

 dc-slice-controller:

 dc-slice-provider: undefined

 ip: undefined

 port: undefined

 VIM: undefined

 vdus:

 # defining load balancer VDU

 - dc-vdu:

 id: load_balancer

 name: load_balancer

 description: load balancer for elastic CDN deployment

 host-count-in-dc: 1

 max-host-count-in-dc: 1

 # defining web server cluster VDU

 - dc-vdu:

 id: web_server_VM

 name: web_server_VM

 description: web-servers for elastic CDN deployment

 host-count-in-dc: {equal: 5}

 max-host-count-in-dc: {equal: 8}

Figure 30. Slice part description in YAML

In Figure 30, each dc-slice part:

● has an undefined dc-slice-controller section that will be filled with the appropriate information,

once the Builder selects one of the candidate providers’ offers returned by the Broker.

● lists the VDUs of the service specification and the hosts that are being designated to. Each dc-

vdu section identifies the corresponding VDU from the service description and is annotated with

a set of requirements or constraints. Such constraints can be either in the form of a value (e.g.,

max-host-count-in-dc: 1) or expressions as relational constraints that the value must satisfy.

Figure 30 demonstrates alternative ways of expressing constraints: can either be constants (i.e.,

D4.1: Provisional API and Information Model Specification

NECOS project

47
EUB-01-2017

numeric values) or relational expressions, as in the case of {equal:5}. Obviously, other relational

constraints can be used, such as {greater_than:5}, etc.

Undefined and constrained values justify the term “partially defined” of the PDT message, since they

act as “variables” in the slice structure. As such, it contains sufficient information for the rest of the

components to discover resources along with undefined/constrained fields to be completed later in the

discovery process.

A similar design vein is followed for the representation of the net-slice-part (Figure 31):

- net-slice-part:

 name: extrernal_ip_slice1-to-external_ip_slice2

 wan-slice-controller:

 wan-slice-provider: undefined

 ip: undefined

 port: undefined undefined

 WIM: undefined

 links:

 - dc-part1: dc-slice1

 - dc-part2: dc-slice2

 type: interaction

 accommodates:

 - service-element: orc-to-wsc

 - service-element: wsc-to-orc-monitoring

 link-ends:

 link-end1-ip: undefined

 link-end2-ip: undefined

Figure 31. Net slice part description in YAML.

Similarly, the sections regarding the WAN-Slice-Controller and link-ends are left undefined, whereas

the “accommodates” section defines the service elements that correspond to the links that this network

connection should accommodate.

The information depicted in the slice block outlined in Figure 31 is not sufficient for the Broker to query

Slice Agents for resources. Thus, the above is sent together with the service description, as mentioned

previously. The service description contains a plethora of requirements and constraints that must be met

by the resources to be matched. We decided not to duplicate that information here, for reasons of

representational economy.

D4.1: Provisional API and Information Model Specification

NECOS project

48
EUB-01-2017

4.2 Queries Addressed to Resource Providers

The Broker decomposes the template it receives from the Builder and creates a different query for each

slice component. Given the structure of the PDT message, such decomposition can be performed easily,

since each slice component corresponds to a different resource provider. The Broker has all the

necessary information to form query messages that contain all the constraints/preferences/resources

needed for the component request message. For instance, such a message is depicted in Figure 32:

dc-slice-part:

 name: dc-slice1

 slice-constraints:

 geographic: EUROPE

 slice-requirements:

 elasticity: true

 reliability:

 description: reliability level

 enabled: true

 value: none # {path-backup, logical-backup, physical-backup}

 slice-lifecycle:

 description: lifecycle status

 status: construction # {modification, activation, deletion}

 cost:

 dc-model:

 model: COST_PER_PHYSICAL_MACHINE_PER_DAY

 value-euros: {lower_than_equal: 10}

 slice-timeframe:

 service-start-time: {100918: 10 pm CET}

 service-stop-time: {101018: 10 pm CET}

 dc-slice-controller:

 dc-slice-provider: undefined

 ip: undefined

 port: undefined

 vdus: …

 vim: …

Figure 32. Broker to DC Slice agent query message.

D4.1: Provisional API and Information Model Specification

NECOS project

49
EUB-01-2017

As shown in Figure 30, the message contains a number of sections that need to be filled by the Slice

Agent when responding positively. For instance, information regarding the dc-slice-controller needs to

be completed with its own information and the cost model section. Instantiated values act as constraints

with respect to the slice part (e.g., elasticity). Constraints regarding the specific hosts that will host the

VDUs are described in section vdus (Figure 33).

 # defining load balancer VDU

 - dc-vdu:

 id: load_balancer

 instance-count: 1

 hosting: DEDICATED

 epa-attributes:

 host-epa:

 cpu-model: PREFER_CORE2DUO

 cpu-architecture: PREFER_X86_64

 cpu-vendor: PREFER_INTEL

 cpu-number: 2

 storage-gb: {in_range: [2, 4]}

 memory-mb: {greater_or_equal: 4096}

 # host Operating System image properties

 os-properties:

 architecture: {equal: x86_64}

 type: linux

 distribution: ubuntu

 version: 16.04

 image-type: EMULAB

 host-image: 'dns_load_balancer'

 # defining web server cluster VDU

 - dc-vdu:

 id: web_server_VM

 …

 # defining orchestrator VDU

 - dc-vdu:

 id: orchestrator

 vim:

 name: cdn-xen-vim

 type: XEN-SERVER

D4.1: Provisional API and Information Model Specification

NECOS project

50
EUB-01-2017

 on-demand: true

 host-count: 5

 max-host-count: 8

 image: 'ubuntu_linux_16.04_xen_server'

 hypervisor:

 type: XEN

 version: '4.5'

 vswitch:

 type: openvswitch

 acceleration: PREFERRED

 offload: PREFERRED

Figure 33. VDU specification in YAML.

As depicted in Figure 33, for each dc-vdu the host-epa attributes section contains information regarding

the host characteristics required and any additional constraints. For instance, in the specific case the

preferred CPU architecture is X86_64 (cpu-architecture: PREFER_X86_64), and the storage capacity

has to be in the range of 2 to 4 GB (storage-gb: {in_range: [2, 4]}). The latter demonstrates how

constraints on resources are communicated via relational constraint expression.

A similar message is sent to the WAN providers (Figure 34) that contains the necessary information for

allocating the link between DC slice parts. Messages to WAN providers are sent after processing of the

DC Providers’ replies.

net-slice-part:

 # Same information as in the DC-above

 slice-constraints: …

 slice-requirements:

 slice-lifecycle: …

 cost: …

 slice-timeframe: …

 wan-slice-controller:

 wan-slice-provider: undefined

 ip: undefined

 port: undefined

 WIM: undefined

 links:

 - dc-part1:

 name: dc-slice1

 dc-slice-point-of-presence:

 # Needs more attributes

 pop-name: defined-previous-step-by-broker

D4.1: Provisional API and Information Model Specification

NECOS project

51
EUB-01-2017

 ip: defined-previous-step-by-broker

 router-type: defined-previous-step-by-broker

 reservation-protocol: undefined

 requirements:

 bandwidth: 1 GB

 - dc-part2:

 name: dc-slice2

 …

 type: interaction

 constraints:

 bandwidth: 1 GB

 link-ends:

 link-end1-ip: undefined

 link-end2-ip: undefined

Figure 34. Link specification in YAML.

It should be noted that the same scheme can be alternatively implemented by sending complex queries

to the Slice Agents in order to report availability on multiple components of the slice. The advantages of

this alternative approach will be further investigated in the future.

4.3 SRA Message

The Broker collects all alternative responses to the messages above, and sends the response to the

Builder. Responses for each alternative slice-part (both dc-slice parts and network-slice parts) are, in

fact, lists of alternative resources originating from the Providers’ Slice Agents. Since each Slice Agent

supplies references to the offered slice parts, along with cost and other information, the Builder is in

position to select the configuration of the slice that best matches the client’s needs. Mechanisms for slice

part selection and allocation will be described in the deliverable D5.1.

This concludes the initial presentation of the slice resource discovery workflow. Next steps include the

Slice Builder instantiating slice parts to resources offered by providers and finally passing this

information to the Slice Orchestrator to complete the slice creation according to the deliverable D3.1.

D4.1: Provisional API and Information Model Specification

NECOS project

52
EUB-01-2017

5 NECOS Cloud API Specifications

This section presents the cloud APIs specified by NECOS for slice request, creation, configuration, and

run-time management. These cloud APIs have been classified into: (i) client-to-cloud APIs, which

include API methods invoked by the Tenant for slice request, control and run-time management, and (ii)

cloud-to-cloud APIs, which are associated with interactions between NECOS system components

residing in different domains (e.g., in the case of federation), such as the Slice Resource Orchestrator,

the Slice Builder, Slice Broker, the Slice Agents, and the Slice Controllers, as shown in Figure 35. In

Section 5.1, we elaborate on the client-to-cloud API specifications, whereas Section 5.2 describes the

cloud-to-cloud APIs.

Figure 35. NECOS Client-to-Cloud Interface / API

5.1 Client-to-Cloud API

5.1.1 Slice (and Service) Management

NECOS provides different means to a Tenant to request the instantiation of a service and / or slice to a

NECOS (LSDC) Slice Provider, as detailed in this section. The tenant has the option to initiate the

creation of a slice with one of the following specification types, reflecting different levels of abstraction:

(i) the Slice Specification, the lowest abstraction level focusing on resource aspects, (ii) the Slice

Requirements, specifying the general slice requirements and leaving the Slice Builder with the assistance

of the Slice Specification Processor to determine the slice details, and (iii) the Service Specification,

detailing the service to be deployed. As discussed in Section 3, the information model representation for

the Tenant covers all these aspects and the above three types of slice requests complete different sets of

attributes in the model. Subsequently, the Slice Specification Processor prepares the input of the Slice

Builder and the latter translates the Slice Requirements or the Service Specification to an equivalent

Slice Specification, in the form of the Partially Defined Template (PDT).

In particular, NECOS supports the following API methods for slice instantiation and management:

create_slice (Slice Specification, [Start Time], [End Time]): Slice ID

When this API call is invoked, the NECOS Slicing Orchestrator receives an explicit slice specification

(also including slice requirements) as an input from a Tenant. This is the lowest level of abstraction that

can be used by a Tenant to interact with the NECOS Slice Provider via the Client-to-Cloud Interface.

The API method create_slice shall be invoked by the Tenant (e.g., via the Slice Activator in Figure 35)

providing an explicit description of the slice topology to be instantiated (using the NECOS information

model presented in Section 3, including e.g., required resources such as number of cores, type of

VIMs/WIMs, geographical constraints of the infrastructure elements, etc.) along with potential expected

slice requirements (e.g., delay constraints, rules of compliance, etc.). As an example, when using this

D4.1: Provisional API and Information Model Specification

NECOS project

53
EUB-01-2017

API call, the Tenant may explicitly define the number of (physical) hosts to be part of the slice, a

particular type of VIM to be used to manage a slice segment, as well as slice access points to be used

later on to anchor service instances to that slice (e.g., hooks to the VIM or SSH connectivity for remote

configuration tools like ansible).

The submitted input parameters are processed by the Slice Specifications Processor, which takes care

of merging the requested slice topology description with the slice requirements, also verifying their full

compliance. As soon as the above check is completed, the final slice specification is eventually produced

and provided as an input to the Slice Builder component of the NECOS Slicing Orchestrator. The

operation flow continues according to the steps required for building a (multi-provider) slice via the

Cloud-to-Cloud API. The Slice Builder takes also into account the received slice requirements to

generate a set of rules to be used by the Slice Resource Orchestrator to trigger slice lifecycle events –

parameters of the slice are being adjusted at run-time according to monitoring information collected,

while the slice is up and running using the Cloud-to-Cloud API. At the end of the Slice creation process,

a Slice ID associated to the new created slice is returned to the Slice Activator in the Tenant’s Domain

and is being used by the Tenant to deploy service instances on that particular slice via its own Service

Orchestrator.

Alternatively, a Tenant may provide the description of a slice to be instantiated by the NECOS Slice

Provider, at a given future instance in time, using the optional Start Time and End Time parameters in

the signature. The operation flow is identical to the previous create_slice API call but the Slice Builder

is not actually activating the slice until the specified time instant is reached (i.e., specified by the Start

Time parameter) and the slice remains until the time instance specified by the End Time parameter is

reached. However, resource reservation might be requested on the potentially involved domains via the

Slice Marketplace Cloud-to-Cloud interface. Start Time, End Time and other relevant parameters are

part of the Slice Specification as well, but the signature definition overrides the equivalent attributes in

the specification.

create_slice (Slice Requirements): Slice ID

In this case, the Slice Resource Orchestrator receives a set of Slice Requirements from a Tenant: a

Tenant is able to request the allocation of a given set of resources, in the form of slice, for its services

to be instantiated. However, the Tenant is aware of the services requirements and uses them as an input

for the novel NECOS Slice-as-a-Service feature. As such, the Tenant is not providing a full specification

of the slice elements, as in the previous API call. For instance, a requirement of the slice might be

associated with delay bounds between two arbitrary elements of the slice to be created, e.g., for delay

sensitive services, the expected delay must be lower than a given critical threshold specified as part of

the desired QoS. That delay information might be factored in during the creation of the slice in order to

e.g., map the slice connectivity related part on the proper network links interconnecting the computation

and storage resources.

In this case, a Tenant invokes the create_slice method and provides as parameter a description of the

expected slice requirements. The requirements are in the form of contract, an equivalent to Service Level

Agreement for a Slice (i.e., a Slice Level Agreement), consisting of one or more slice objectives

(expressed as specific constraints on some KPIs of interest for the slice) to be fulfilled throughout the

whole lifecycle of the slice. This method invocation results again in a request being sent to the Slice

Specification Processor of the NECOS Slicing Orchestrator, which processes the requirements and

generates a Slice Specification for the Slice Builder. The workflow continues as in the description of the

previous API call. In the case of request rejection, (e.g., due to insufficient resources), the API method

will return a Slice ID set to 0, which will indicate to the tenant the outcome of his request (i.e., rejection).

create_slice (Service Specification): Slice ID

In this case, a Tenant uses the NECOS Client-to-Cloud Interface to provide a high-level specification

of a service (including also additional service related requirements / KPIs objectives) that are being

translated into the Slice Specification required to run that particular service. The service may be defined

D4.1: Provisional API and Information Model Specification

NECOS project

54
EUB-01-2017

as a forwarding graph that contains service elements (e.g., VNF instances, VM / Container image types)

available from different infrastructure providers / domains. This Service Specification is being

considered together with the provided service requirements, at the slice instantiation time.

In this case, the Slice Activator in Figure 35 receives the Tenant’s Service Specification, in the same

way with a Slice Specification and invokes the API call using that specification as an input parameter.

This has the effect of propagating the Service Specification to the Slice Specification Processor within

the NECOS Slicing Orchestrator. A Slice Specification related to that service is generated from the Slice

Specification Processor and eventually processed by the Slice Builder to start the slice creation process.

From that moment, the workflow is the same, as described for the previous API calls. As an additional

step, once the slice creation is completed, the Slice Activator triggers the actual service instantiation on

the new slice via the Service Orchestrator in the Tenant’s Domain.

delete_slice (Slice ID)

This API call is exposed to a Tenant to allow the deactivation of a slice that is no longer required. The

invocation of this call triggers the decommission of the slice (identified by the Slice ID) via the

interaction with the Slice Resource Orchestrator, which takes care of releasing the allocated resources

in the corresponding Resource Domains (via the Cloud-to-Cloud API). In case there is a service running

on the slice, the delete_slice method triggers the termination of the particular service.

get_slice_parts (Slice ID): Slice Part ID []

As soon as a Slice is successfully instantiated, and its related Slice ID has been generated and returned

to the requesting Tenant, further operations might be carried out on the slice in order to, e.g., adjust its

configuration and / or perform life-cycle operations on the slice. The Tenant may retrieve additional

information about his allocated Slice using this API call by providing the ID of the Slice of interest, as

an input parameter. This call returns a set of IDs associated to the different Parts of the Slice that can be

used to perform fine-grained configuration / operational tasks on each element of the allocated slice. At

this point, we decided to allow a lower-level view of the slice abstraction to the Tenant (i.e., have access

to the slice parts), to allow better fine-tuning in the provided slice. This option may be omitted in the

refined deliverable, since the advanced high-level abstractions we plan to build can make this obsolete.

start_service ([Service Specification, Service Name], Slice ID): Service ID

This API call is invoked by a Tenant to request the instantiation of a service on the slice (identified by

the Slice ID) that was previously created by the NECOS Slice Provider. The service can be identified

by its name, in the case a Service Specification was used for the slice creation, or by a new Service

Specification. In the latter case, this process includes a validation step for the consistency of the Service

Specification with the Slice Specification of the particular slice. When this call is invoked by the Service

Orchestrator in the Tenant’s Domain, the Service Specification is passed to the Service Orchestrator

Adaptor (in the NECOS Slicing Orchestrator), which, in turn, performs any required adaptation before

requesting the embedding of the desired service on the slice. The call returns the ID of the instantiated

service.

stop_service (Service ID)

This API call is used by a Tenant who previously submitted a service instantiation request (for a service

identified by the Service ID) to stop the corresponding service elements, deployed on a slice.

get_service_info (Service ID): Service Status Information

This API call is invoked by a Tenant who previously submitted a service instantiation request to retrieve

information about the runtime status of that particular service (identified by Service ID). This

information can include, e.g., the status of the service elements (such as VNFs, containers, links) in the

case where the service monitoring process was delegated to NECOS (according to the level of

D4.1: Provisional API and Information Model Specification

NECOS project

55
EUB-01-2017

abstraction in the interaction Tenant / Provider). More advanced monitoring options will be provided

from the evolution of the IMA components.

5.1.2 Slice Configuration

After a successful slice provisioning requested by a Tenant using the API calls described in Section

5.1.1, the client should have the ability to configure and operate his slice. For example, the client may

request the scaling of an existing slice, e.g., the addition of new hosts to increase the compute / storage

resources, links, or network elements (e.g., virtual switches, routers, etc.). In this respect, NECOS

further provides Client-to-Cloud API methods that are associated to the slice configuration and its

lifecycle management.

In terms of slice configuration, the Client-to-Cloud API provides different methods to be used according

to the level of abstraction (i.e., on the slice request or slice mode) that a Tenant wishes to use when

interacting with a NECOS Slice Provider, as detailed in the two following subsections.

5.1.2.1 Lowest abstraction level

NECOS provides additional Client-to-Cloud API methods to Tenants that wish to exercise various

operations (e.g., control, configuration, life-cycle management) to a slice that was previously allocated

by a NECOS Slice Provider. In the following, we present a set of such API methods that allow the

Tenant to interact with the different slice parts and to the different elements related to them using the

lowest available level of abstraction. In this Section, we refer to element as a generic instantiated entity,

representing, e.g., a Host, a Path, a Switch, a Router (this list is not be exhaustive).

get_slice_part_infrastructure_management_handle (Slice Part ID): Slice Part Management

URL

This API method allows a Tenant to provide the ID of a slice part and to retrieve (when available) the

URL that should be used to interact with the management interface of the VIM / WIM running on that

slice part. This can be, for instance, the URL of the GUI that should be accessed to customise an

Openstack instance that was deployed (on demand) in the slice part identified by the Slice Part ID.

get_slice_part_elements (Slice Part ID): Slice Part Element ID []

A Tenant that requires performing low-level configuration and management operations on the elements

composing a slice part, uses this API call to retrieve the related references to them. When invoking this

call using a given Slice Part ID, a list of Element IDs for that slice part are returned.

get_element_handle (Element ID): Element Management URL

This API call provides the abstractions to retrieve a proper Management entry point associated to the

element of a slice part identified by an Element ID. For example, if the element is a physical host, a

URL may be returned to access that particular host, e.g., for VNC or SSH.

add_element (Slice Part ID, Element Specification)

A Tenant uses this API call to dynamically modify the topology of an already allocated slice.

This call provides a Tenant with a relatively abstracted way to add a new element to the slice

part identified by the Slice Part ID. The NECOS components take care of reconfiguring the

topology of the end-to-end slice to fulfil the Tenant’s request. The Element Specification

contains information on the element, such as an image for the physical host, router configuration,

etc. The NECOS Slicing Orchestrator forwards the add_element requests to the relevant Slice

Controllers. The latter instantiate elements matching the element specifications and include

D4.1: Provisional API and Information Model Specification

NECOS project

56
EUB-01-2017

them in the corresponding slice parts. In case the particular slice part does not have enough

resources, this may trigger either a negative response or a slice elasticity process.

delete_element (Element ID)

As described for the previous API call (add_element), a Tenant is able to delete one of the elements

from a slice part by providing the corresponding Element ID. The NECOS system abstracts the required

management and configuration operations to the Tenant and the topology of the end-to-end slice is

automatically modified to fulfil the Tenant’s request.

5.1.2.2 Intermediate abstraction level

In a slightly different scenario of interaction between the Tenant and a NECOS Provider, the former

might need to modify / adjust the topology of an already existing slice without being aware of the related

implementation details. In this case, the Tenant should consider using the API calls described in this

subsection. In this abstraction level, the Tenant manages the slice as a whole, in a seamless way with

respect to the consisting slice parts.

get_slice (Slice ID): Slice Specification

The Tenant uses this API method to retrieve the description (i.e., the representation of the slice using

the NECOS information model in Section 3) of a slice identified by its Slice ID.

update_slice (Slice ID, [Slice Specification], [Service Specification])

A Tenant that requested the allocation of a slice and received the associated Slice ID after its successful

instantiation, is able to modify the slice topology by providing an updated Specification for it (either via

the Slice or Service Specification parameter). The API call is processed by the NECOS system that

transparently adjusts the arrangement of the slice parts (and elements) according to the delta between

the existing and the old slice specifications. This abstraction level does not allow direct manipulation of

service elements (i.e., addition or removal), because this may trigger inconsistencies in the Service

Specification, so the update_slice method with a refined Service Specification should be used instead.

add_resources (Slice ID, Resource Descriptor)

This API method allows a Tenant to dynamically modify the topology of his own slice (identified by

the Slice ID) by adding new (virtual) resources via the specification of a Resource Descriptor to be

attached to the already existing slice. This is slightly different from the update_slice method, as in this

case the explicit specification of the resource elements to be attached to the slice are being provided,

instead of a new global slice description. The Resource Descriptor is the subset of the Slice

Specifications that corresponds to one or a set of resources.

delete_resources (Slice ID, Resource Name)

A Tenant uses this API to explicitly delete resources from the slice identified by the Slice ID and

described by the Resource Name, which is an attribute of the Resource Descriptor specified through

the previous call. The NECOS system processes the request and abstracts the operations related to the

modification of the existing slice. The Resource Name should be unique within a particular slice.

5.2 Cloud-to-Cloud APIs

As soon as a Tenant completes the submission of a slice instantiation request to one of the entry points

of the NECOS platform (using any of the methods of the Client-to-Cloud API described in Section 5.1.1),

the involved NECOS Slice Provider processes that request and starts the instantiation of the

corresponding end-to-end slice.

D4.1: Provisional API and Information Model Specification

NECOS project

57
EUB-01-2017

Considering the interaction workflow described for the API call create_slice (Service Specification):

Slice ID in Section 5.1.1, when a Tenant wishes to deploy the slice via the specification of a (type of)

service that should be running on the slice, he should first describe that particular service. This process

may involve an interaction with a Service Marketplace offering different service parts, however this step

is out of the scope of this document. Once the service to be deployed is defined by the Tenant using an

arbitrary combination of the logical service elements, and after the invocation of the create_slice call, a

slice descriptor is generated by the Slice Specifications Processor and sent to the Slice Builder.

A similar (simplified) workflow is also executed when the Tenant submits the request for a slice

instantiation via the create_slice (Slice Specification, [Start Time], [End Time]) or create_slice (Slice

Requirements) API calls, described in Section 5.1.1. A Slice descriptor is eventually generated also in

this case, and provided again as input to the Slice Builder (by the Slice Specifications Processor) to

actually start off the slice instantiation process via the Cloud-to-Cloud API.

The NECOS Cloud-to-Cloud API consists of 4 different interfaces as depicted in Figure 36, i.e., the Slice

Request Interface, the Slice Instantiation Interface, the Slice Marketplace Interface and the Slice

Runtime Interface. Details related to each of the above interfaces will be provided in the remainder of

this Section.

Figure 36. NECOS Cloud-to-Cloud API.

5.2.1 Slice Request Interface

This API initiates the slice creation process. We assume that the Slice Builder, after receiving the

invocation of the initiate_slice_creation call on its internal interface (this API has not fully been

detailed in the current release of the document and will be further described in the final version of this

deliverable), interacts with the Slice Broker (in the Resource Marketplace) to request an updated view

of the resources available from the different providers that have “registered” their availability to that

Slice Broker. The term “registered” is used here to identify whatever form of interaction between the

Slice Broker and the underlying Slice Agents (the communication mechanisms are not restricted to any

particular technology).

The Slice Request Interface should provide the methods described in the following in order to support

the functionalities required by the Slice Builder to discover and select resources made available from

(external) resource Providers that can be used to build the requested end-to-end slice.

D4.1: Provisional API and Information Model Specification

NECOS project

58
EUB-01-2017

locate_slice_resources (Partially Defined Template): Service Resource Alternatives

The Slice Builder starts the slice instantiation process by invoking the locate_slice_resources API call

(on the Slice Broker). The method requires the Tenant input in the form of a Partially Defined Template

(PDT), which covers both the Slice Descriptor and the Slice Requirements. The Broker first identifies

which Providers are able to supply resources for the required slice parts, according to the overall view

that the Slice Broker collected via the Slice Marketplace Interface. The Broker responds with a Service

Resource Alternatives (SRA) message which includes a list of the Slice Controllers corresponding to

the providers offering resources.

5.2.2 Slice Instantiation Interface

The next phase of the slice creation process involves interactions via the Slice Instantiation Interface

between the Slice Builder and the set of Slice Controllers retrieved earlier via the Slice Request Interface

(i.e., after the invocation of the locate_slice_resources call). Based on the list of entry points of the

Slice Controllers and on the slice topology partitioning returned by the Slice Broker, the Slice Builder

submits individual requests to the relevant Slice Controllers to allocate resources for each single part of

the end-to-end slice. The descriptors and requirements for each slice part are being produced based on

the PDT message.

The Slice Instantiation Interface provides the following methods in order to support the functionalities

required by the Slice Controllers to reserve, activate and release the elements of a slice part.

request_slice_part (Slice Part Descriptor, Slice Part Requirements): Slice Part ID

This API method is exposed by the Slice Controllers. The Slice Part Descriptor (which is generated

based on the Slice Specification or the Service Specification) details the characteristics of either a DC

or network part of the overall slice, whereas the Slice Part Requirements (which are generated from the

Slice Requirements) are used to provide information about the performance requirements for that

particular slice part, as derived from the initial description of the end-to-end Slice. Resources are

reserved on the Slice Controller that receives the invocation of this API call, and a Slice Part ID is

returned back as a response, in case of a successful interaction.

activate_slice_part (Slice Part ID): {Slice Part ID, Infrastructure Manager Handle}

This API method is also part of the interface exposed by the Slice Controllers. This particular method

is used to actually activate a slice part (identified by the Slice Part ID) on that Slice Controller and

deploy the on-demand VIM/WIM (Slicing Mode 0) or a shim object on behalf of the tenant (Slicing

Mode 1). As a result of the call, a handle to the relevant Infrastructure Manager (e.g., a VIM / WIM) or

shim object that was allocated in the Slice Part is returned.

delete_slice_part (Slice Part ID)

This method is exposed by the Slice Controller to allow the deletion of a slice part. As a result of the

call, the allocated resources/elements of the slice part are released.

5.2.3 Slice Marketplace Interface

This API is related to the interaction between the Slice Broker and the Slice Agents to implement

mechanisms for the propagation of resource offerings between (external) resource domains. As already

discussed earlier, different Slice Agents register their resources’ availability to the Slice Broker. The

interaction involving the Slice Broker and the underlying Slice Agents (i.e., communication mechanisms

and protocols) are pluggable and not constrained to any specific implementation / technology. The API

is aligned to the NECOS Slice Discovery Framework detailed in Section 4.

register_provider (Agent Entry Point): Provider ID, Location

D4.1: Provisional API and Information Model Specification

NECOS project

59
EUB-01-2017

This API method is exposed by the Slice Broker in order to select candidate providers. The Agent Entry

Point describes the Providers’ Slice Agents, which announce their presence to the Slice Broker and then

interact to provide offers regarding their resources. Every Provider, either DC or WAN, returns to this

API call its Provider ID along with its geographic Location. The former information is used by the

Broker when responding to the Builder by loading the appropriate fields in the Service Resource

Alternatives (SRA) message, e.g., dc-slice-controller, dc-slice-point-of-presence (i.e., response to the

corresponding PDT message). The latter is evaluated to meet the Tenant’s geographic slice constraints.

push_resource_offer (Resource Descriptor): Resource Element ID [], Cost

This API method is also exposed by the Slice Broker in order to receive a pool of offers regarding either

a DC or a network part of a whole slice. The Resource Descriptor field specifies the kind of resource

to be offered, while the Resource Element ID list sent by the Slice Agent is explicitly defining the

attributes of a specific piece of resource element, e.g., a Host. For example, while the Resource

Descriptor indicates the offer of a dc-vdu, the Resource Element ID list sent by the Slice Agent

contains the full list of attributes corresponding to a specific host-epa. The resource offer is accompanied

by its corresponding Cost and takes part in the formation of a Service Resource Alternatives (SRA)

message.

pull_resource_offer (Slice Description): Resource Element ID [], Cost

A similar API to the push_resource_offer is the pull_resource_offer API which, however, is exposed

by the Slice Agents and returns Resource Element ID lists and their Cost as a response to a Slice

Description request submitted by the Slice Broker. More specifically, once the Broker receives the PDT

message, it decomposes it in different queries towards the Slice Agents. Each query specifies the Slice

Description of a slice component, which defines the resource specifications of the latter. The Slice

Description is included and further defined in the Resource Element ID list returned by the Slice Agent.

In practice, while the dc-vdu fields define a set of preferences regarding the specifications of a host-epa,

e.g., storage_gb: {in_range: [2, 4]}, the same fields are explicitly defined inside the Slice Agent

response, which is the response of this API call, e.g., storage_gb: 4. The responses are used in the

Service Resource Alternatives (SRA) message, which is the response of the Slice Broker to the Slice

Builder.

5.2.4 Slice Runtime Interface

This API implements the interface that provides functionalities to dynamically modify the resource

allocation for a slice part. This is required by the Slice Resource Orchestration to perform lifecycle

operation on the end-to-end slice according to the feedback received by each slice part via the monitoring

measurements.

get_slice_part_elements (Slice Part ID): Slice Part Element ID []

This API method is exposed by the Slice Controllers to allow the Slice Resource Orchestrator to get the

references to the elements of a given slice part. When invoking this call using a given Slice Part ID, a

list of Element IDs for that slice part is returned to the Slice Resource Orchestration that invoked the

call.

get_element_handle (Element ID): Element Management URL

This API method is exposed by the Slice Controllers to allow a Slice Resource Orchestration to retrieve

a proper Management entry point associated to the element of a slice part, identified by the Element ID.

add_element (Slice Part ID, Element Specification)

D4.1: Provisional API and Information Model Specification

NECOS project

60
EUB-01-2017

This API method is exposed by the Slice Controllers to allow a Slice Resource Orchestrator to

dynamically add a new element into an already allocated slice part. Upon receiving this call, the Slice

Controller looks for an element matching the element specification and adds that element to the slice

part.

delete_element (Element ID)

This API method is exposed by the Slice Controllers to allow a Slice Resource Orchestrator to

dynamically remove an element from an already allocated slice part.

Note that the API methods get_slice_part_elements, add_element and delete_element can be invoked

by the Slice Resource Orchestrator to provide low-level details of the slice-part elements (and fulfil the

tenant’s requests described in Section 5.1.2.1), as well as to provide high-level information of the slice

part (and fulfil the tenant’s requests described in Section 5.1.2.2). In the latter case, the Slice Resource

Orchestrator may derive the required high-level information from the low-level one.

update_slice (Slice Part ID, Slice Part Descriptor)

A Slice Resource Orchestrator that requested the allocation of a slice part and received the associated

Slice Part ID after its successful instantiation, is able to modify the elements of the slice part by

providing an updated Specification for it (via the Slice Part Descriptor parameter). The API call is being

processed by the Slice Controller that adjusts the arrangement of the slice elements according to the

delta between the existing and the new Slice Part Descriptor.

start_VNFs (VNF Descriptor, Infrastructure Manager Handle): VNF_ID []

This API method is exposed by the Resource and VM Management components to allow a Slice

Resource Orchestrator to start VNFs (described by the VNF Descriptor parameter) under the

management of a given VIM (identified by the Infrastructure Manager Handle parameter) in a given

slice part. When invoking this call, the relevant VIM instantiates the VNFs and the VNF_IDs are

returned to the Slice Resource Orchestrator.

delete_VNFs (VNF_ID [], Infrastructure Manager Handle)

This API method is exposed by the Resource and VM Management components to allow a Slice

Resource Orchestrator to delete VNFs (described by the VNF_ID [] parameter) running under the

management of a given VIM (identified by the Infrastructure Manager Handle parameter) in a given

slice part.

get_VNFs_info (VNF_ID [], Infrastructure Manager Handle): VNF status information

This API method is exposed by the Resource and VM Monitoring components to allow a Slice Resource

Orchestrator to retrieve status information on VNFs (described by the VNF_ID [] parameter) running

under the management of a given VIM (identified by the Infrastructure Manager Handle parameter)

in a given slice part.

We note that we will seek the alignment of VNF-related API methods with ETSI NFV MANO, and

particularly with its VNFM component. Further details on this will be documented in D4.2.

D4.1: Provisional API and Information Model Specification

NECOS project

61
EUB-01-2017

6 Conclusions

This deliverable provides the first version of the NECOS information model, from the Tenant, Slice

Database and the Infrastructure Provider viewpoints, and a set of cloud API methods, which are either

invoked by the Tenant during slice request, configuration, run-time management (i.e., client-to-cloud

APIs) or by the NECOS system for slice provisioning, control, and resource orchestration (i.e., cloud-

to-cloud APIs). D4.1 further elaborates on methods for resource discovery, describing the workflow and

detailed examples of exchanged information in YAML. All these specifications have been made after

careful inspection of SOTA, which has been analyzed in this deliverable.

Essentially, this deliverable extends the NECOS system architecture (documented in D3.1) with the

necessary means to request and provision slices, enabling a new cloud computing model, namely Slice

as a Service. The information model and the cloud APIs will be further refined within WP4, and certain

extensions are foreseen, especially as the model and the APIs are integrated and tested in the NECOS

proof-of-concept implementation. The final version of the information model and cloud APIs will appear

in the deliverable D4.2.

D4.1: Provisional API and Information Model Specification

NECOS project

62
EUB-01-2017

7 References

[3GPP] 3GPP, http://www.3gpp.org/

[5GEX] 5GEx Deliverable 2.2, “5GEx Final System Requirements and Architecture”, December 2017,

https://drive.google.com/open?id=1O8KjGolPEAWlit0wRJ_pLykvvanJ2Rk5

[BBF] BBF SD-406: End-to-End Network Slicing, https://www.broadband-forum.org/5g

[CONTRERAS18] L. M. Contreras, “Slicing challenges for operators”, Book chapter in Emerging

Automation Techniques for the Future Internet, M. Boucadair and C. Jacquenet (Eds.), IGI Global, 2018.

[GALIS2017] “Network slicing terms and systems” slides. Available online:

https://datatracker.ietf.org/meeting/99/materials/slides-99-netslicing-alex-galis-netslicing-terms-and-

systems-02, access in May 30th, 2018.

[GOTO18] Y. Goto, Standardization of Automation Technology for Network Slice Management by

ETSI Zero Touch Network and Service Management Industry Specification Group (ZSM ISG), NTT

Technical Review, Vol. 16, No. 9, Sept. 2018.

[ietfdata2018] A. Clemm, et al., "A Data Model for Network Topologies", Internet Draft, expires on

June 2018. Available online: https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-20

[ietfcoms2018a] L. Qiang, et al. "Technology Independent Information Model for Network Slicing",

Internet Draft, expires on July 30, 2018. Available online: https://tools.ietf.org/html/draft-qiang-coms-

netslicing-information-model-02.

[ietfcoms2018b] C. Qiang, "COMS Architectural Design Enablers & Artefacts-I, COMS Technology

Independent Information Model" Slides. Available online:

https://datatracker.ietf.org/meeting/101/materials/slides-101-coms-coms-architectural-design-enablers-

artefacts-1-coms-technology-independent-information-model-cristina-qiang-00

[ITU-T Y.3011] Recommendation ITU-T Y.3011 (01/2012), SERIES Y: GLOBAL INFORMATION

INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION

NETWORKS - Next Generation Networks – Future networks - Framework of network virtualization

for future networks.

[ITU-T Y.3111] Recommendation ITU-T Y.3111 (09/2017), SERIES Y: GLOBAL INFORMATION

INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS,

INTERNET OF THINGS AND SMART CITIES - Future networks -IMT-2020 network management

and orchestration framework.

[MEC] ETSI MEC, Multi-access Edge Computing (MEC), MEC support for network slicing, GR MEC

024 v 2.0.5, July 2018.

[MEDHIOUB2011] H. Medhioub, I. Houidi, W. Louati, and D. Zeghlache, Design, implementation and

evaluation of virtual resource description and clustering framework, IEEE International Conference on

Advanced Information Networking and Applications (AINA), 2011.

[NFV] ETSI Network Operator Perspectives on NFV priorities for 5G,

https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf.

[NGMN] NGMN White Paper description of network for service provider networks,

https://www.ngmn.org/fileadmin/user_upload/161010_NGMN_Network_Slicing_framework_v1.0.8.p

df

[NML] Network Markup Language Working Group, Available online:

http://www.ogf.org/gf/group_info/view.php?group=nml-wg

[novi2015] J. van der Ham, J. Stéger, S. Laki, Y. Kryftis, V. Maglaris, and C. de Laat, “The NOVI

information models, Future Generation Computer Systems”, 42(C), 2015, pp. 64–73,

http://doi.org/10.1016/j.future.2013.12.017

http://www.3gpp.org/
https://drive.google.com/open?id=1O8KjGolPEAWlit0wRJ_pLykvvanJ2Rk5
https://www.broadband-forum.org/5g
https://datatracker.ietf.org/meeting/99/materials/slides-99-netslicing-alex-galis-netslicing-terms-and-systems-02
https://datatracker.ietf.org/meeting/99/materials/slides-99-netslicing-alex-galis-netslicing-terms-and-systems-02
https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-20
https://tools.ietf.org/html/draft-qiang-coms-netslicing-information-model-02
https://tools.ietf.org/html/draft-qiang-coms-netslicing-information-model-02
https://datatracker.ietf.org/meeting/101/materials/slides-101-coms-coms-architectural-design-enablers-artefacts-1-coms-technology-independent-information-model-cristina-qiang-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-coms-coms-architectural-design-enablers-artefacts-1-coms-technology-independent-information-model-cristina-qiang-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-coms-coms-architectural-design-enablers-artefacts-1-coms-technology-independent-information-model-cristina-qiang-00
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
https://www.ngmn.org/fileadmin/user_upload/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
https://www.ngmn.org/fileadmin/user_upload/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
http://www.ogf.org/gf/group_info/view.php?group=nml-wg
http://doi.org/10.1016/j.future.2013.12.017

D4.1: Provisional API and Information Model Specification

NECOS project

63
EUB-01-2017

[RFC7950] M. Bjorklund, The YANG 1.1 Data Modeling Language. (M. Bjorklund, Ed.). RFC Editor,

2016, https://doi.org/10.17487/RFC7950

Version History

Version Date Author Change record

0.1 11/07/2018 P. Papadimitriou Creation

0.2 03/09/2018 P. Papadimitriou First integrated draft

1.0 28/09/2018 P. Papadimitriou Final version release

https://doi.org/10.17487/RFC7950

